Astrophysics Through Computation
Title | Astrophysics Through Computation PDF eBook |
Author | Brian Koberlein |
Publisher | Cambridge University Press |
Pages | 385 |
Release | 2013-06-28 |
Genre | Computers |
ISBN | 1107010748 |
This new astrophysics text integrates analytical and computational methods to explore a broad range of topics in astrophysics.
Effective Computation in Physics
Title | Effective Computation in Physics PDF eBook |
Author | Anthony Scopatz |
Publisher | "O'Reilly Media, Inc." |
Pages | 567 |
Release | 2015-06-25 |
Genre | Science |
ISBN | 1491901586 |
More physicists today are taking on the role of software developer as part of their research, but software development isnâ??t always easy or obvious, even for physicists. This practical book teaches essential software development skills to help you automate and accomplish nearly any aspect of research in a physics-based field. Written by two PhDs in nuclear engineering, this book includes practical examples drawn from a working knowledge of physics concepts. Youâ??ll learn how to use the Python programming language to perform everything from collecting and analyzing data to building software and publishing your results. In four parts, this book includes: Getting Started: Jump into Python, the command line, data containers, functions, flow control and logic, and classes and objects Getting It Done: Learn about regular expressions, analysis and visualization, NumPy, storing data in files and HDF5, important data structures in physics, computing in parallel, and deploying software Getting It Right: Build pipelines and software, learn to use local and remote version control, and debug and test your code Getting It Out There: Document your code, process and publish your findings, and collaborate efficiently; dive into software licenses, ownership, and copyright procedures
Astrophysics through Computation
Title | Astrophysics through Computation PDF eBook |
Author | Brian Koberlein |
Publisher | Cambridge University Press |
Pages | 385 |
Release | 2013-06-28 |
Genre | Science |
ISBN | 1107276454 |
This new text surveys a series of fundamental problems in astrophysics, both analytically and computationally, for advanced students in physics and astrophysics. The contents are supported by more than 110 class-tested Mathematica® notebooks, allowing rigorous solutions to be explored in a visually engaging way. Topics covered include many classical and historically interesting problems, enabling students to appreciate the mathematical and scientific challenges that have been overcome in the subject's development. The text also shows the advantages and disadvantages of using analytical and computational methods. It will serve students, professionals and capable amateurs to master the quantitative details of modern astrophysics and the computational aspects of their research projects. Downloadable Mathematica® resources available at www.cambridge.org/koberlein.
Intelligent Astrophysics
Title | Intelligent Astrophysics PDF eBook |
Author | Ivan Zelinka |
Publisher | Springer Nature |
Pages | 300 |
Release | 2021-04-15 |
Genre | Technology & Engineering |
ISBN | 3030658678 |
This present book discusses the application of the methods to astrophysical data from different perspectives. In this book, the reader will encounter interesting chapters that discuss data processing and pulsars, the complexity and information content of our universe, the use of tessellation in astronomy, characterization and classification of astronomical phenomena, identification of extragalactic objects, classification of pulsars and many other interesting chapters. The authors of these chapters are experts in their field and have been carefully selected to create this book so that the authors present to the community a representative publication that shows a unique fusion of artificial intelligence and astrophysics.
Computational Plasma Physics
Title | Computational Plasma Physics PDF eBook |
Author | Toshi Tajima |
Publisher | CRC Press |
Pages | 428 |
Release | 2018-03-14 |
Genre | Science |
ISBN | 0429981104 |
The physics of plasmas is an extremely rich and complex subject as the variety of topics addressed in this book demonstrates. This richness and complexity demands new and powerful techniques for investigating plasma physics. An outgrowth from his graduate course teaching, now with corrections, Tajima's text provides not only a lucid introduction to computational plasma physics, but also offers the reader many examples of the way numerical modeling, properly handled, can provide valuable physical understanding of the nonlinear aspects so often encountered in both laboratory and astrophysical plasmas. Included here are computational methods for modern nonlinear physics as applied to hydrodynamic turbulence, solitons, fast reconnection of magnetic fields, anomalous transports, dynamics of the sun, and more. The text contains examples of problems now solved using computational techniques including those concerning finite-size particles, spectral techniques, implicit differencing, gyrokinetic approaches, and particle simulation.
Computational Physics
Title | Computational Physics PDF eBook |
Author | Mark E. J. Newman |
Publisher | Createspace Independent Publishing Platform |
Pages | 0 |
Release | 2013 |
Genre | Computational physics |
ISBN | 9781480145511 |
This book explains the fundamentals of computational physics and describes the techniques that every physicist should know, such as finite difference methods, numerical quadrature, and the fast Fourier transform. The book offers a complete introduction to the topic at the undergraduate level, and is also suitable for the advanced student or researcher. The book begins with an introduction to Python, then moves on to a step-by-step description of the techniques of computational physics, with examples ranging from simple mechanics problems to complex calculations in quantum mechanics, electromagnetism, statistical mechanics, and more.
Fundamentals of Astrophysics
Title | Fundamentals of Astrophysics PDF eBook |
Author | Stan Owocki |
Publisher | Cambridge University Press |
Pages | 306 |
Release | 2021-06-03 |
Genre | Science |
ISBN | 1108952828 |
This concise textbook, designed specifically for a one-semester course in astrophysics, introduces astrophysical concepts to undergraduate science and engineering students with a background in college-level, calculus-based physics. The text is organized into five parts covering: stellar properties; stellar structure and evolution; the interstellar medium and star/planet formation; the Milky Way and other galaxies; and cosmology. Structured around short easily digestible chapters, instructors have flexibility to adjust their course's emphasis as it suits them. Exposition drawn from the author's decade of teaching his course guides students toward a basic but quantitative understanding, with 'quick questions' to spur practice in basic computations, together with more challenging multi-part exercises at the end of each chapter. Advanced concepts like the quantum nature of energy and radiation are developed as needed. The text's approach and level bridge the wide gap between introductory astronomy texts for non-science majors and advanced undergraduate texts for astrophysics majors.