Fundamentals of Astrophysical Fluid Dynamics
Title | Fundamentals of Astrophysical Fluid Dynamics PDF eBook |
Author | Shoji Kato |
Publisher | Springer Nature |
Pages | 635 |
Release | 2020-06-19 |
Genre | Science |
ISBN | 9811541744 |
This book offers an overview of the fundamental dynamical processes, which are necessary to understand astrophysical phenomena, from the viewpoint of hydrodynamics, magnetohydrodynamics, and radiation hydrodynamics. The book consists of three parts: The first discusses the fundamentals of hydrodynamics necessary to understand the dynamics of astrophysical objects such as stars, interstellar gases and accretion disks. The second part reviews the interactions between gases and magnetic fields on fluid motions – the magnetohydrodynamics – highlighting the important role of magnetic fields in dynamical phenomena under astrophysical environments. The third part focuses on radiation hydrodynamics, introducing the hydrodynamic phenomena characterized by the coupling of radiation and gas motions and further on relativistic radiation hydrodynamics. Intended as a pedagogical introduction for advanced undergraduate and graduate students, it also provides comprehensive coverage of the fundamentals of astrophysical fluid dynamics, making it an effective resource not only for graduate courses, but also for beginners wanting to learn about hydrodynamics, magnetohydrodynamics, and radiation hydrodynamics in astrophysics independently.
Radiation Hydrodynamics
Title | Radiation Hydrodynamics PDF eBook |
Author | John I. Castor |
Publisher | Cambridge University Press |
Pages | 369 |
Release | 2004-09-23 |
Genre | Science |
ISBN | 0521833094 |
Publisher Description
Foundations of Radiation Hydrodynamics
Title | Foundations of Radiation Hydrodynamics PDF eBook |
Author | Dimitri Mihalas |
Publisher | Courier Corporation |
Pages | 753 |
Release | 2013-04-10 |
Genre | Science |
ISBN | 0486135888 |
Excellent, informative volume focuses on dynamics of nonradiating fluids, problems involving waves, shocks and stellar winds, physics of radiation, radiation transport, and the dynamics of radiating fluids. 1984 edition.
The Equations of Radiation Hydrodynamics
Title | The Equations of Radiation Hydrodynamics PDF eBook |
Author | Gerald C. Pomraning |
Publisher | Courier Corporation |
Pages | 306 |
Release | 2005-01-01 |
Genre | Science |
ISBN | 0486445992 |
Graduate-level text examines propagation of thermal radiation through a fluid and its effects on the hydrodynamics of fluid motion. Topics include approximate formulations of radiative transfer and relativistic effects of fluid motion; microscopic physics associated with the equation of transfer; inverse Compton scattering; and hydrodynamic description of fluid. 1973 edition.
Astrophysical Radiation Hydrodynamics
Title | Astrophysical Radiation Hydrodynamics PDF eBook |
Author | Karl-Heinz A. Winkler |
Publisher | Springer Science & Business Media |
Pages | 588 |
Release | 2012-12-06 |
Genre | Science |
ISBN | 9400947542 |
This NATO Advanced Research Workshop was devoted to the pre sentation, evaluation, and critical discussion of numerical methods in nonrelativistic and relativistic hydrodynamics, radia tive transfer, and radiation-coupled hydrodynamics. The unifying theme of the lectures was the successful application of these methods to challenging problems in astrophysics. The workshop was subdivided into 3 somewhat independent topics, each with their own subtheme. Under the heading radiation hydrodynamics were brought together context, theory, methodology, and application of radia tive transfer and radiation hydrodynamics in astrophysics. The intimate coupling between astronomy and radiation physics was underscored by examples from past and present research. Frame-dependence of both the equation of transfer (plus moments) and the underlying radiation quantities was discussed and clarified. Limiting regimes in radiation-coupled flow were identified and described; the dynamic diffusion regime received special emphasis. Numerical methods for continuum and line transfer equations in a given background were presented. Two examples of methods for computing dynamically coupled radia tion/matter fields were given. In l-d and assuming LTE the complete equations of radiation hydrodynamics can be solved with current computers. Such is not the case in 2- or 3-d, which were identified as target areas for research. The use of flux-limiters was vigorously discussed in this connection, and enlivened the meeting.
Computational Methods for Astrophysical Fluid Flow
Title | Computational Methods for Astrophysical Fluid Flow PDF eBook |
Author | Randall J. LeVeque |
Publisher | Springer Science & Business Media |
Pages | 523 |
Release | 2006-04-18 |
Genre | Science |
ISBN | 3540316329 |
This book leads directly to the most modern numerical techniques for compressible fluid flow, with special consideration given to astrophysical applications. Emphasis is put on high-resolution shock-capturing finite-volume schemes based on Riemann solvers. The applications of such schemes, in particular the PPM method, are given and include large-scale simulations of supernova explosions by core collapse and thermonuclear burning and astrophysical jets. Parts two and three treat radiation hydrodynamics. The power of adaptive (moving) grids is demonstrated with a number of stellar-physical simulations showing very crispy shock-front structures.
Astrophysical Radiation Hydrodynamics
Title | Astrophysical Radiation Hydrodynamics PDF eBook |
Author | Karl-Heinz A. Winkler |
Publisher | Springer |
Pages | 0 |
Release | 1986-11-30 |
Genre | Science |
ISBN | 9789027723352 |
This NATO Advanced Research Workshop was devoted to the pre sentation, evaluation, and critical discussion of numerical methods in nonrelativistic and relativistic hydrodynamics, radia tive transfer, and radiation-coupled hydrodynamics. The unifying theme of the lectures was the successful application of these methods to challenging problems in astrophysics. The workshop was subdivided into 3 somewhat independent topics, each with their own subtheme. Under the heading radiation hydrodynamics were brought together context, theory, methodology, and application of radia tive transfer and radiation hydrodynamics in astrophysics. The intimate coupling between astronomy and radiation physics was underscored by examples from past and present research. Frame-dependence of both the equation of transfer (plus moments) and the underlying radiation quantities was discussed and clarified. Limiting regimes in radiation-coupled flow were identified and described; the dynamic diffusion regime received special emphasis. Numerical methods for continuum and line transfer equations in a given background were presented. Two examples of methods for computing dynamically coupled radia tion/matter fields were given. In l-d and assuming LTE the complete equations of radiation hydrodynamics can be solved with current computers. Such is not the case in 2- or 3-d, which were identified as target areas for research. The use of flux-limiters was vigorously discussed in this connection, and enlivened the meeting.