Associative Memory Cells: Basic Units of Memory Trace
Title | Associative Memory Cells: Basic Units of Memory Trace PDF eBook |
Author | Jin-Hui Wang |
Publisher | Springer Nature |
Pages | 281 |
Release | 2019-09-10 |
Genre | Medical |
ISBN | 9811395012 |
This book focuses on associative memory cells and their working principles, which can be applied to associative memories and memory-relevant cognitions. Providing comprehensive diagrams, it presents the author's personal perspectives on pathology and therapeutic strategies for memory deficits in patients suffering from neurological diseases and psychiatric disorders. Associative learning is a common approach to acquire multiple associated signals, including knowledge, experiences and skills from natural environments or social interaction. The identification of the cellular and molecular mechanisms underlying associative memory is important in furthering our understanding of the principles of memory formation and memory-relevant behaviors as well as in developing therapeutic strategies that enhance memory capacity in healthy individuals and improve memory deficit in patients suffering from neurological disease and psychiatric disorders. Although a series of hypotheses about neural substrates for associative memory has been proposed, numerous questions still need to be addressed, especially the basic units and their working principle in engrams and circuits specific for various memory patterns. This book summarizes the developments concerning associative memory cells reported in current and past literature, providing a valuable overview of the field for neuroscientists, psychologists and students.
Discovering the Brain
Title | Discovering the Brain PDF eBook |
Author | National Academy of Sciences |
Publisher | National Academies Press |
Pages | 195 |
Release | 1992-01-01 |
Genre | Medical |
ISBN | 0309045290 |
The brain ... There is no other part of the human anatomy that is so intriguing. How does it develop and function and why does it sometimes, tragically, degenerate? The answers are complex. In Discovering the Brain, science writer Sandra Ackerman cuts through the complexity to bring this vital topic to the public. The 1990s were declared the "Decade of the Brain" by former President Bush, and the neuroscience community responded with a host of new investigations and conferences. Discovering the Brain is based on the Institute of Medicine conference, Decade of the Brain: Frontiers in Neuroscience and Brain Research. Discovering the Brain is a "field guide" to the brainâ€"an easy-to-read discussion of the brain's physical structure and where functions such as language and music appreciation lie. Ackerman examines: How electrical and chemical signals are conveyed in the brain. The mechanisms by which we see, hear, think, and pay attentionâ€"and how a "gut feeling" actually originates in the brain. Learning and memory retention, including parallels to computer memory and what they might tell us about our own mental capacity. Development of the brain throughout the life span, with a look at the aging brain. Ackerman provides an enlightening chapter on the connection between the brain's physical condition and various mental disorders and notes what progress can realistically be made toward the prevention and treatment of stroke and other ailments. Finally, she explores the potential for major advances during the "Decade of the Brain," with a look at medical imaging techniquesâ€"what various technologies can and cannot tell usâ€"and how the public and private sectors can contribute to continued advances in neuroscience. This highly readable volume will provide the public and policymakersâ€"and many scientists as wellâ€"with a helpful guide to understanding the many discoveries that are sure to be announced throughout the "Decade of the Brain."
Shedding Light on the Nervous System: Progress in Neurophotonics Research
Title | Shedding Light on the Nervous System: Progress in Neurophotonics Research PDF eBook |
Author | Jean-Claude Béïque |
Publisher | Frontiers Media SA |
Pages | 250 |
Release | 2022-07-01 |
Genre | Science |
ISBN | 2889764818 |
Modeling Human and Organizational Behavior
Title | Modeling Human and Organizational Behavior PDF eBook |
Author | Panel on Modeling Human Behavior and Command Decision Making: Representations for Military Simulations |
Publisher | National Academies Press |
Pages | 433 |
Release | 1998-08-14 |
Genre | Business & Economics |
ISBN | 0309523893 |
Simulations are widely used in the military for training personnel, analyzing proposed equipment, and rehearsing missions, and these simulations need realistic models of human behavior. This book draws together a wide variety of theoretical and applied research in human behavior modeling that can be considered for use in those simulations. It covers behavior at the individual, unit, and command level. At the individual soldier level, the topics covered include attention, learning, memory, decisionmaking, perception, situation awareness, and planning. At the unit level, the focus is on command and control. The book provides short-, medium-, and long-term goals for research and development of more realistic models of human behavior.
Neural Plasticity and Memory
Title | Neural Plasticity and Memory PDF eBook |
Author | Federico Bermudez-Rattoni |
Publisher | CRC Press |
Pages | 368 |
Release | 2007-04-17 |
Genre | Psychology |
ISBN | 1420008412 |
A comprehensive, multidisciplinary review, Neural Plasticity and Memory: From Genes to Brain Imaging provides an in-depth, up-to-date analysis of the study of the neurobiology of memory. Leading specialists share their scientific experience in the field, covering a wide range of topics where molecular, genetic, behavioral, and brain imaging techniq
Beyond the Cognitive Map
Title | Beyond the Cognitive Map PDF eBook |
Author | A. David Redish |
Publisher | MIT Press |
Pages | 452 |
Release | 1999 |
Genre | Medical |
ISBN | 9780262181945 |
There are currently two major theories about the role of the hippocampus, a distinctive structure in the back of the temporal lobe. One says that it stores a cognitive map, the other that it is a key locus for the temporary storage of episodic memories. A. David Redish takes the approach that understanding the role of the hippocampus in space will make it possible to address its role in less easily quantifiable areas such as memory. Basing his investigation on the study of rodent navigation--one of the primary domains for understanding information processing in the brain--he places the hippocampus in its anatomical context as part of a greater functional system. Redish draws on the extensive experimental and theoretical work of the last 100 years to paint a coherent picture of rodent navigation. His presentation encompasses multiple levels of analysis, from single-unit recording results to behavioral tasks to computational modeling. From this foundation, he proposes a novel understanding of the role of the hippocampus in rodents that can shed light on the role of the hippocampus in primates, explaining data from primate studies and human neurology. The book will be of interest not only to neuroscientists and psychologists, but also to researchers in computer science, robotics, artificial intelligence, and artificial life.
Structure, function, and plasticity of hippocampal dentate gyrus microcircuits
Title | Structure, function, and plasticity of hippocampal dentate gyrus microcircuits PDF eBook |
Author | Peter Jonas |
Publisher | Frontiers Media SA |
Pages | 134 |
Release | 2015-02-13 |
Genre | Neurosciences. Biological psychiatry. Neuropsychiatry |
ISBN | 288919387X |
The hippocampus mediates several higher brain functions, such as learning, memory, and spatial coding. The input region of the hippocampus, the dentate gyrus, plays a critical role in these processes. Several lines of evidence suggest that the dentate gyrus acts as a preprocessor of incoming information, preparing it for subsequent processing in CA3. For example, the dentate gyrus converts input from the entorhinal cortex, where cells have multiple spatial fields, into the spatially more specific place cell activity characteristic of the CA3 region. Furthermore, the dentate gyrus is involved in pattern separation, transforming relatively similar input patterns into substantially different output patterns. Finally, the dentate gyrus produces a very sparse coding scheme in which only a very small fraction of neurons are active at any one time. How are these unique functions implemented at the level of cells and synapses? Dentate gyrus granule cells receive excitatory neuron input from the entorhinal cortex and send excitatory output to the hippocampal CA3 region via the mossy fibers. Furthermore, several types of GABAergic interneurons are present in this region, providing inhibitory control over granule cell activity via feedback and feedforward inhibition. Additionally, hilar mossy cells mediate an excitatory loop, receiving powerful input from a small number of granule cells and providing highly distributed excitatory output to a large number of granule cells. Finally, the dentate gyrus is one of the few brain regions exhibiting adult neurogenesis. Thus, new neurons are generated and functionally integrated throughout life. How these specific cellular and synaptic properties contribute to higher brain functions remains unclear. One way to understand these properties of the dentate gyrus is to try to integrate experimental data into models, following the famous Hopfield quote: “Build it, and you understand it.” However, when trying this, one faces two major challenges. First, hard quantitative data about cellular properties, structural connectivity, and functional properties of synapses are lacking. Second, the number of individual neurons and synapses to be represented in the model is huge. For example, the dentate gyrus contains ~1 million granule cells in rodents, and ~10 million in humans. Thus, full scale models will be complex and computationally demanding. In this Frontiers Research Topic, we collect important information about cells, synapses, and microcircuit elements of the dentate gyrus. We have put together a combination of original research articles, review articles, and a methods article. We hope that the collected information will be useful for both experimentalists and modelers. We also hope that the papers will be interesting beyond the small world of “dentology,” i.e., for scientists working on other brain areas. Ideally, the dentate gyrus may serve as a blueprint, helping neuroscientists to define strategies to analyze network organization of other brain regions.