Assessment of Low Temperature Cracking in Asphalt Pavement Mixes and Rheological Performance of Asphalt Binders

Assessment of Low Temperature Cracking in Asphalt Pavement Mixes and Rheological Performance of Asphalt Binders
Title Assessment of Low Temperature Cracking in Asphalt Pavement Mixes and Rheological Performance of Asphalt Binders PDF eBook
Author
Publisher
Pages 240
Release 2015
Genre
ISBN

Download Assessment of Low Temperature Cracking in Asphalt Pavement Mixes and Rheological Performance of Asphalt Binders Book in PDF, Epub and Kindle

Government spends a lot of money on the reconstruction and rehabilitation of road pavements in any given year due to various distresses and eventual failure. Low temperature (thermal) cracking, one of the main types of pavement distress, contributes partly to this economic loss, and comes about as a result of accumulated tensile strains exceeding the threshold tensile strain capacity of the pavement. This pavement distress leads to a drastic reduction of the pavement's service life and performance. In this study, the severity of low temperature (thermal) cracking on road pavements selected across the Province of Ontario and its predicted time to failure was assessed using the AASTHO Mechanistic-Empirical Pavement Design Guide (MEPDG) and AASHTOWARE (TM) software, with inputs such as creep compliance and tensile strength from laboratory test. Highway 400, K1, K2, Y1, Sasobit, Rediset LQ, and Rediset WMX were predicted to have a pavement in-service life above 15 years. Additionally, the rheological performance of the recovered asphalt binders was assessed using Superpave (TM) tests such as the dynamic shear rheometer (DSR) and bending beam rheometer (BBR). Further tests using modified standard protocols such as the extended bending beam rheometer (eBBR) (LS-308) test method and double-edge notched tension (DENT) test (LS-299) were employed to evaluate the failure properties associated with in service performance. The various rheological tests showed K1 to be the least susceptible to low temperature cracking compared to the remaining samples whiles Highway 24 will be highly susceptible to low temperature cracking. X-ray fluorescence (XRF) analysis was performed on the recovered asphalt binders to determine the presence of metals such as zinc (Zn) and molybdenum (Mo) believed to originate from waste engine oil, which is often added to asphalt binders. Finally, the severity of oxidative aging (hardening) of the recovered asphalt binders was also evaluated using the Fourier transform infrared (FTIR) spectroscopy to determine the abundance of functional groups such as the carbonyl (CO) and sulfoxide (SO). Functional groups such as styrene and butadiene were also evaluated to determine the polymer modifier content in recovered asphalt binders.

Evaluation of Low Temperature Cracking in Asphalt Pavement Mixes

Evaluation of Low Temperature Cracking in Asphalt Pavement Mixes
Title Evaluation of Low Temperature Cracking in Asphalt Pavement Mixes PDF eBook
Author Khaled Ksaibati
Publisher
Pages 134
Release 1998
Genre Pavements, Asphalt
ISBN

Download Evaluation of Low Temperature Cracking in Asphalt Pavement Mixes Book in PDF, Epub and Kindle

This report examines the feasibility of using the thermal stress restrained specimen test to evaluate low temperature cracking in asphalt pavement mixes. Data were collected from laboratory and field evaluations. Various mixing, aging, and compaction methods were used to prepare test samples with materials obtained from two Wyoming Department of Transportation (WYDOT) highway projects. Field data were obtained from two recently built test sections and compared with laboratory test results. Pavement condition surveys quantified low temperature cracking of both test sections after one winter. Temperature data for the project sites also were collected. Pavement condition and temperature data were compared to results from the thermal stress restrained specimen test. The thermal stress restrained specimen test was effective in testing asphalt pavement mixes. However, test results indicated that lab prepared samples did not closely simulate field samples. Also, comparisons of lab results with field conditions were performed. However, it is recommended that a more comprehensive analysis be performed after test sections have been in service for a few years.

Binder Characterization and Evaluation: Test methods

Binder Characterization and Evaluation: Test methods
Title Binder Characterization and Evaluation: Test methods PDF eBook
Author
Publisher
Pages 220
Release 1994
Genre Asphalt
ISBN

Download Binder Characterization and Evaluation: Test methods Book in PDF, Epub and Kindle

Performance Assessment of Asphalt Mixes Containing Reclaimed Asphalt Pavement and Tire Rubber

Performance Assessment of Asphalt Mixes Containing Reclaimed Asphalt Pavement and Tire Rubber
Title Performance Assessment of Asphalt Mixes Containing Reclaimed Asphalt Pavement and Tire Rubber PDF eBook
Author Shawn Shiangfeng Hung
Publisher
Pages
Release 2018
Genre
ISBN 9781085585194

Download Performance Assessment of Asphalt Mixes Containing Reclaimed Asphalt Pavement and Tire Rubber Book in PDF, Epub and Kindle

The pavement community, including both agencies and industries, is moving toward more sustainable pavement designs and pavement network management. Increasing amounts of recycled materials, both reclaimed asphalt pavement (RAP) and recycled tire rubber, are expected to be used in new pavement construction projects in the future to reduce the use of virgin binder and aggregates. The main concern of using recycled materials in new asphalt pavement is the potential negative effect on the performance. Thus, the primary objective of this dissertation is to improve the current laboratory testing technologies and performance assessment approaches for characterizing the performance-related properties of asphalt mixes containing recycled materials and to improve understanding of how these properties affect the performance of asphalt pavements so that they can be designed and constructed better. A major challenge regarding the use of high RAP content mixes is the differences in the rheological properties of the virgin binder (mixes without RAP) and the blended binder (mixes with RAP). Traditionally, binder blending charts are used to determine the appropriate RAP content in asphalt mixes and the selection of virgin binder grade as part of the Superpave volumetric mix design procedures when RAP is incorporated in the mix. However, producing mixes based on blending charts that require testing of extracted and recovered RAP binders is expensive and hazardous. An alternative test approach for binder blending charts using fine aggregate matrix (FAM) mix testing is presented in this dissertation. The results demonstrated that the proposed approach could estimate the blended binder intermediate and low performance grading temperatures within ±3°C of the measured blended binder performance grading temperatures. Even though the proposed approach is not as accurate as the blending chart method (within ±2°C), it provides both cost and environmental benefits. Currently, the Superpave Performance Grading (PG) system cannot not be used to evaluate the performance-related properties of asphalt rubber binders produced using larger crumb rubber particles (maximum particle size passing 2.36 mm sieve) due to the limitations of parallel plate geometry. With the consideration of more open-graded or gap-graded rubberized hot mix asphalt (RHMA-O and RHMA-G) projects in the future, it is important to be able to perform Superpave PG testing on asphalt rubber binder and to establish performance-based contract acceptance criteria for the production of asphalt rubber binders. The test results indicated that the concentric cylinder geometry is an appropriate alternative geometry to parallel plates for quantifying the properties of asphalt rubber binders and specifically for assessing the high-temperature performance properties of binders containing crumb rubber particles larger than 250 [mu]m. Concerns have been raised with regard to incorporating reclaimed rubberized asphalt pavement (RRAP) into dense-graded new hot mix asphalt (HMA-DG) and RAP into new RHMA-G since the interactions between the virgin binder, age-hardened binder, and recycled tire rubber could considerably affect the rutting, fatigue cracking, and thermal cracking performances of new HMA-DG and RHMA-G. The fundamental differences between RAP and RRAP were identified and the performance of new mixes that contain these recycled materials were evaluated in this study. The experimental results showed that adding RRAP to HMA-DG mixes is ideal to resist rutting and low-temperature cracking based on the changes in mix stiffness. The HMA-DG mixes containing RRAP are better at resisting high tensile strain loadings than mixes containing RAP. In addition, adding RAP to RHMA-G mixes improves the rutting performance but diminishes the cracking performance, and potentially negating the benefits of selecting RHMA-G as an overlay to retard the rate of reflection cracking. Lastly, the effects of rest periods on asphalt fatigue performance considering asphalt thixotropy, non-linearity, self-heating, self-cooling, and steric hardening were also investigated in this research. The experimental test results showed that asphalt thixotropic softening and other biasing effects control the first 10 to 15 percent decrease in stiffness for unmodified binders and 15 to 35 percent decrease in stiffness for modified binders under cyclic loading, and this decrease in stiffness can be recovered with the introduction of rest periods. This means that most of the repeated loadings applied to test specimens within the thixotropic softening range do not caused any fatigue damage but only softening of the materials. Thus, by providing sufficient rest periods within the thixotropic softening range can effectively improve asphalt fatigue performance. Both the thixotropic softening range and the required time for thixotropic recovery (i.e., rest periods) need to be considered in asphalt fatigue test and mechanistic-empirical (ME) design for better evaluation of the true fatigue performance.

Asphalt Paving Technology 2014

Asphalt Paving Technology 2014
Title Asphalt Paving Technology 2014 PDF eBook
Author Eugene Skok
Publisher DEStech Publications, Inc
Pages 777
Release 2015-02-10
Genre Technology & Engineering
ISBN 1605952060

Download Asphalt Paving Technology 2014 Book in PDF, Epub and Kindle

New developments in asphalt with bio-oil, rubber and polymer componentsEmpirical data and models on binders, aggregates, RAP, WMA, HMA for pavementSpecial section on asphalt paving research in IndiaFully-searchable text on CD-ROM (included) The latest volume of the AAPT series features over two dozen research presentations devoted to the chemistry, engineering, modeling and testing of asphalt materials and processing. Developments in the use of components like bio-oil are discussed, as are strategies for testing asphalt components for wear and durability at low and high temperatures. The book offers new data on the performance of reclaimed/recycled materials in asphalt paving. A special section focuses exclusively on discussions of binder modifications. The CD-ROM displays figures and illustrations in articles in full color along with a title screen and main menu screen. Each user can link to all papers from the Table of Contents and Author Index and also link to papers and front matter by using the global bookmarks which allow navigation of the entire CD-ROM from every article. Search features on the CD-ROM can be by full text including all key words, article title, author name, and session title. The CD-ROM has Autorun feature for Windows 2000 with Service Pack 4 or higher products along with the program for Adobe Acrobat Reader with Search 11.0. One year of technical support is included with your purchase of this product.

Rheological and Rutting Characterization of Asphalt Mixes with Modified Binders

Rheological and Rutting Characterization of Asphalt Mixes with Modified Binders
Title Rheological and Rutting Characterization of Asphalt Mixes with Modified Binders PDF eBook
Author S. Anjan kumar
Publisher
Pages 12
Release 2012
Genre Aging
ISBN

Download Rheological and Rutting Characterization of Asphalt Mixes with Modified Binders Book in PDF, Epub and Kindle

This paper presents the results of investigations on the rheological properties of modified asphalt binders and their influence on the performance of asphalt mixes. Asphalt mixes with modified binders such as styrene butadiene styrene polymer, crumb rubber, natural rubber, and waste plastics were evaluated for their rheological properties and compared to the properties of asphalt mixes with unmodified VG30 (viscosity grade) asphalt binder. The dynamic modulus values and rutting characteristics of the asphalt mixes were studied with due consideration to different levels of aging and temperature variations. Studies on the rheological properties showed that the energy dissipated by unmodified asphalt (VG30) binder is higher than that of modified asphalt binders. Long-term aged natural rubber and waste plastic modified asphalt binders showed significant increase in the properties compared to unmodified asphalt binder (VG30). Reduced temperature susceptibility of polymer modified asphalt binder showed that only polymer modification can enhance both high temperature rutting resistance and low temperature thermal cracking resistance of asphalt mixes. The transient nature of polymer modified asphalt mix from viscoelastic solid-like to viscoelastic fluid-like condition is significantly shifted to higher temperature compared to that of the mix with unmodified asphalt binder. Aging and rutting indices showed that rubber modified asphalt mixes are highly susceptible to aging. Statistical analysis of test results showed that the process of modification of asphalt binder, aging, and temperature during the test influence the rheological and rutting characteristics of asphalt mixes significantly. Correlation between the asphalt binder properties and its influence on the rutting resistance are found to be statistically significant. The analysis using least significant difference showed that polymer modified asphalt binder significantly improves the aging and rutting resistance of asphalt mixes compared to unmodified asphalt binder.

MODELING OF ASPHALT CONCRETE

MODELING OF ASPHALT CONCRETE
Title MODELING OF ASPHALT CONCRETE PDF eBook
Author Y. Richard Kim
Publisher McGraw Hill Professional
Pages 482
Release 2007-09-22
Genre Technology & Engineering
ISBN 0071596518

Download MODELING OF ASPHALT CONCRETE Book in PDF, Epub and Kindle

An Expert Guide to Developing More-Durable and Cost-Effective Asphalt Pavements Written by distinguished experts from countries around the world, Modeling of Asphalt Concrete presents in-depth coverage of the current materials, methods, and models used for asphalt pavements. Included is state-of-the-art information on fundamental material properties and mechanisms affecting the performance of asphalt concrete, new rheological testing and analysis techniques, constitutive models, and performance prediction methodologies for asphalt concrete and asphalt pavements. Emphasis is placed on the modeling of asphalt mixes for specific geographic/climatic requirements. In light of America's crumbling infrastructure and our heavy usage of asphalt as a paving material, this timely reference is essential for the development of more-durable and cost-effective asphalt materials for both new construction and rehabilitation. Harness the Latest Breakthroughs in Asphalt Concrete Technology: • Asphalt Rheology • Constitutive Models • Stiffness Characterization • Models for Low-Temperature Cracking • Models for Fatigue Cracking and Moisture Damage • Models for Rutting and Aging