Artificial Intelligence in Data Mining
Title | Artificial Intelligence in Data Mining PDF eBook |
Author | D. Binu |
Publisher | Academic Press |
Pages | 271 |
Release | 2021-02-17 |
Genre | Science |
ISBN | 0128206160 |
Artificial Intelligence in Data Mining: Theories and Applications offers a comprehensive introduction to data mining theories, relevant AI techniques, and their many real-world applications. This book is written by experienced engineers for engineers, biomedical engineers, and researchers in neural networks, as well as computer scientists with an interest in the area. - Provides coverage of the fundamentals of Artificial Intelligence as applied to data mining, including computational intelligence and unsupervised learning methods for data clustering - Presents coverage of key topics such as heuristic methods for data clustering, deep learning methods for data classification, and neural networks - Includes case studies and real-world applications of AI techniques in data mining, for improved outcomes in clinical diagnosis, satellite data extraction, agriculture, security and defense
Data Mining
Title | Data Mining PDF eBook |
Author | Ian H. Witten |
Publisher | Elsevier |
Pages | 665 |
Release | 2011-02-03 |
Genre | Computers |
ISBN | 0080890369 |
Data Mining: Practical Machine Learning Tools and Techniques, Third Edition, offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. This highly anticipated third edition of the most acclaimed work on data mining and machine learning will teach you everything you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining. Thorough updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including new material on Data Transformations, Ensemble Learning, Massive Data Sets, Multi-instance Learning, plus a new version of the popular Weka machine learning software developed by the authors. Witten, Frank, and Hall include both tried-and-true techniques of today as well as methods at the leading edge of contemporary research. The book is targeted at information systems practitioners, programmers, consultants, developers, information technology managers, specification writers, data analysts, data modelers, database R&D professionals, data warehouse engineers, data mining professionals. The book will also be useful for professors and students of upper-level undergraduate and graduate-level data mining and machine learning courses who want to incorporate data mining as part of their data management knowledge base and expertise. - Provides a thorough grounding in machine learning concepts as well as practical advice on applying the tools and techniques to your data mining projects - Offers concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods - Includes downloadable Weka software toolkit, a collection of machine learning algorithms for data mining tasks—in an updated, interactive interface. Algorithms in toolkit cover: data pre-processing, classification, regression, clustering, association rules, visualization
Data Mining and Machine Learning
Title | Data Mining and Machine Learning PDF eBook |
Author | Mohammed J. Zaki |
Publisher | Cambridge University Press |
Pages | 779 |
Release | 2020-01-30 |
Genre | Business & Economics |
ISBN | 1108473989 |
New to the second edition of this advanced text are several chapters on regression, including neural networks and deep learning.
Machine Learning and Data Mining
Title | Machine Learning and Data Mining PDF eBook |
Author | Igor Kononenko |
Publisher | Horwood Publishing |
Pages | 484 |
Release | 2007-04-30 |
Genre | Computers |
ISBN | 9781904275213 |
Good data mining practice for business intelligence (the art of turning raw software into meaningful information) is demonstrated by the many new techniques and developments in the conversion of fresh scientific discovery into widely accessible software solutions. Written as an introduction to the main issues associated with the basics of machine learning and the algorithms used in data mining, this text is suitable foradvanced undergraduates, postgraduates and tutors in a wide area of computer science and technology, as well as researchers looking to adapt various algorithms for particular data mining tasks. A valuable addition to libraries and bookshelves of the many companies who are using the principles of data mining to effectively deliver solid business and industry solutions.
Machine Learning and Data Mining
Title | Machine Learning and Data Mining PDF eBook |
Author | Ryszad S. Michalski |
Publisher | Wiley |
Pages | 472 |
Release | 1998-04-22 |
Genre | Computers |
ISBN | 9780471971993 |
Master the new computational tools to get the most out of your information system. This practical guide, the first to clearly outline the situation for the benefit of engineers and scientists, provides a straightforward introduction to basic machine learning and data mining methods, covering the analysis of numerical, text, and sound data.
Data Mining and Analysis
Title | Data Mining and Analysis PDF eBook |
Author | Mohammed J. Zaki |
Publisher | Cambridge University Press |
Pages | 607 |
Release | 2014-05-12 |
Genre | Computers |
ISBN | 0521766338 |
A comprehensive overview of data mining from an algorithmic perspective, integrating related concepts from machine learning and statistics.
Encyclopedia of Machine Learning
Title | Encyclopedia of Machine Learning PDF eBook |
Author | Claude Sammut |
Publisher | Springer Science & Business Media |
Pages | 1061 |
Release | 2011-03-28 |
Genre | Computers |
ISBN | 0387307680 |
This comprehensive encyclopedia, in A-Z format, provides easy access to relevant information for those seeking entry into any aspect within the broad field of Machine Learning. Most of the entries in this preeminent work include useful literature references.