Artificial Intelligence Foundations

Artificial Intelligence Foundations
Title Artificial Intelligence Foundations PDF eBook
Author Andrew Lowe
Publisher BCS, The Chartered Institute for IT
Pages 160
Release 2020-08-24
Genre
ISBN 9781780175287

Download Artificial Intelligence Foundations Book in PDF, Epub and Kindle

In line with the BCS AI Foundation and Essentials certificates, this book guides you through the world of AI. You will learn how AI is being utilised today, and how it is likely to be used in the future. You will explore robotics and machine learning within the context of AI, and discover how the challenges AI presents are being addressed.

Artificial Intelligence

Artificial Intelligence
Title Artificial Intelligence PDF eBook
Author David L. Poole
Publisher Cambridge University Press
Pages 821
Release 2017-09-25
Genre Computers
ISBN 110719539X

Download Artificial Intelligence Book in PDF, Epub and Kindle

Artificial Intelligence presents a practical guide to AI, including agents, machine learning and problem-solving simple and complex domains.

Foundations of Machine Learning, second edition

Foundations of Machine Learning, second edition
Title Foundations of Machine Learning, second edition PDF eBook
Author Mehryar Mohri
Publisher MIT Press
Pages 505
Release 2018-12-25
Genre Computers
ISBN 0262351366

Download Foundations of Machine Learning, second edition Book in PDF, Epub and Kindle

A new edition of a graduate-level machine learning textbook that focuses on the analysis and theory of algorithms. This book is a general introduction to machine learning that can serve as a textbook for graduate students and a reference for researchers. It covers fundamental modern topics in machine learning while providing the theoretical basis and conceptual tools needed for the discussion and justification of algorithms. It also describes several key aspects of the application of these algorithms. The authors aim to present novel theoretical tools and concepts while giving concise proofs even for relatively advanced topics. Foundations of Machine Learning is unique in its focus on the analysis and theory of algorithms. The first four chapters lay the theoretical foundation for what follows; subsequent chapters are mostly self-contained. Topics covered include the Probably Approximately Correct (PAC) learning framework; generalization bounds based on Rademacher complexity and VC-dimension; Support Vector Machines (SVMs); kernel methods; boosting; on-line learning; multi-class classification; ranking; regression; algorithmic stability; dimensionality reduction; learning automata and languages; and reinforcement learning. Each chapter ends with a set of exercises. Appendixes provide additional material including concise probability review. This second edition offers three new chapters, on model selection, maximum entropy models, and conditional entropy models. New material in the appendixes includes a major section on Fenchel duality, expanded coverage of concentration inequalities, and an entirely new entry on information theory. More than half of the exercises are new to this edition.

The Foundations of Artificial Intelligence

The Foundations of Artificial Intelligence
Title The Foundations of Artificial Intelligence PDF eBook
Author Derek Partridge
Publisher Cambridge University Press
Pages 516
Release 1990-04-26
Genre Computers
ISBN 9780521359443

Download The Foundations of Artificial Intelligence Book in PDF, Epub and Kindle

This outstanding collection is designed to address the fundamental issues and principles underlying the task of Artificial Intelligence.

Machine Learning Foundations

Machine Learning Foundations
Title Machine Learning Foundations PDF eBook
Author Taeho Jo
Publisher Springer Nature
Pages 391
Release 2021-02-12
Genre Technology & Engineering
ISBN 3030659003

Download Machine Learning Foundations Book in PDF, Epub and Kindle

This book provides conceptual understanding of machine learning algorithms though supervised, unsupervised, and advanced learning techniques. The book consists of four parts: foundation, supervised learning, unsupervised learning, and advanced learning. The first part provides the fundamental materials, background, and simple machine learning algorithms, as the preparation for studying machine learning algorithms. The second and the third parts provide understanding of the supervised learning algorithms and the unsupervised learning algorithms as the core parts. The last part provides advanced machine learning algorithms: ensemble learning, semi-supervised learning, temporal learning, and reinforced learning. Provides comprehensive coverage of both learning algorithms: supervised and unsupervised learning; Outlines the computation paradigm for solving classification, regression, and clustering; Features essential techniques for building the a new generation of machine learning.

Responsible Artificial Intelligence

Responsible Artificial Intelligence
Title Responsible Artificial Intelligence PDF eBook
Author Virginia Dignum
Publisher Springer Nature
Pages 133
Release 2019-11-04
Genre Computers
ISBN 3030303713

Download Responsible Artificial Intelligence Book in PDF, Epub and Kindle

In this book, the author examines the ethical implications of Artificial Intelligence systems as they integrate and replace traditional social structures in new sociocognitive-technological environments. She discusses issues related to the integrity of researchers, technologists, and manufacturers as they design, construct, use, and manage artificially intelligent systems; formalisms for reasoning about moral decisions as part of the behavior of artificial autonomous systems such as agents and robots; and design methodologies for social agents based on societal, moral, and legal values. Throughout the book the author discusses related work, conscious of both classical, philosophical treatments of ethical issues and the implications in modern, algorithmic systems, and she combines regular references and footnotes with suggestions for further reading. This short overview is suitable for undergraduate students, in both technical and non-technical courses, and for interested and concerned researchers, practitioners, and citizens.

Logical Foundations of Artificial Intelligence

Logical Foundations of Artificial Intelligence
Title Logical Foundations of Artificial Intelligence PDF eBook
Author Michael R. Genesereth
Publisher Morgan Kaufmann
Pages 427
Release 2012-07-05
Genre Computers
ISBN 0128015543

Download Logical Foundations of Artificial Intelligence Book in PDF, Epub and Kindle

Intended both as a text for advanced undergraduates and graduate students, and as a key reference work for AI researchers and developers, Logical Foundations of Artificial Intelligence is a lucid, rigorous, and comprehensive account of the fundamentals of artificial intelligence from the standpoint of logic. The first section of the book introduces the logicist approach to AI--discussing the representation of declarative knowledge and featuring an introduction to the process of conceptualization, the syntax and semantics of predicate calculus, and the basics of other declarative representations such as frames and semantic nets. This section also provides a simple but powerful inference procedure, resolution, and shows how it can be used in a reasoning system. The next several chapters discuss nonmonotonic reasoning, induction, and reasoning under uncertainty, broadening the logical approach to deal with the inadequacies of strict logical deduction. The third section introduces modal operators that facilitate representing and reasoning about knowledge. This section also develops the process of writing predicate calculus sentences to the metalevel--to permit sentences about sentences and about reasoning processes. The final three chapters discuss the representation of knowledge about states and actions, planning, and intelligent system architecture. End-of-chapter bibliographic and historical comments provide background and point to other works of interest and research. Each chapter also contains numerous student exercises (with solutions provided in an appendix) to reinforce concepts and challenge the learner. A bibliography and index complete this comprehensive work.