Artificial Intelligence and Machine Learning in Healthcare
Title | Artificial Intelligence and Machine Learning in Healthcare PDF eBook |
Author | Ankur Saxena |
Publisher | Springer Nature |
Pages | 228 |
Release | 2021-05-06 |
Genre | Science |
ISBN | 9811608113 |
This book reviews the application of artificial intelligence and machine learning in healthcare. It discusses integrating the principles of computer science, life science, and statistics incorporated into statistical models using existing data, discovering patterns in data to extract the information, and predicting the changes and diseases based on this data and models. The initial chapters of the book cover the practical applications of artificial intelligence for disease prognosis & management. Further, the role of artificial intelligence and machine learning is discussed with reference to specific diseases like diabetes mellitus, cancer, mycobacterium tuberculosis, and Covid-19. The chapters provide working examples on how different types of healthcare data can be used to develop models and predict diseases using machine learning and artificial intelligence. The book also touches upon precision medicine, personalized medicine, and transfer learning, with the real examples. Further, it also discusses the use of machine learning and artificial intelligence for visualization, prediction, detection, and diagnosis of Covid -19. This book is a valuable source of information for programmers, healthcare professionals, and researchers interested in understanding the applications of artificial intelligence and machine learning in healthcare.
Machine Learning and AI for Healthcare
Title | Machine Learning and AI for Healthcare PDF eBook |
Author | Arjun Panesar |
Publisher | Apress |
Pages | 390 |
Release | 2019-02-04 |
Genre | Computers |
ISBN | 1484237994 |
Explore the theory and practical applications of artificial intelligence (AI) and machine learning in healthcare. This book offers a guided tour of machine learning algorithms, architecture design, and applications of learning in healthcare and big data challenges. You’ll discover the ethical implications of healthcare data analytics and the future of AI in population and patient health optimization. You’ll also create a machine learning model, evaluate performance and operationalize its outcomes within your organization. Machine Learning and AI for Healthcare provides techniques on how to apply machine learning within your organization and evaluate the efficacy, suitability, and efficiency of AI applications. These are illustrated through leading case studies, including how chronic disease is being redefined through patient-led data learning and the Internet of Things. What You'll LearnGain a deeper understanding of key machine learning algorithms and their use and implementation within wider healthcare Implement machine learning systems, such as speech recognition and enhanced deep learning/AI Select learning methods/algorithms and tuning for use in healthcare Recognize and prepare for the future of artificial intelligence in healthcare through best practices, feedback loops and intelligent agentsWho This Book Is For Health care professionals interested in how machine learning can be used to develop health intelligence – with the aim of improving patient health, population health and facilitating significant care-payer cost savings.
Artificial Intelligence in Healthcare
Title | Artificial Intelligence in Healthcare PDF eBook |
Author | Adam Bohr |
Publisher | Academic Press |
Pages | 385 |
Release | 2020-06-21 |
Genre | Computers |
ISBN | 0128184396 |
Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data
Deep Medicine
Title | Deep Medicine PDF eBook |
Author | Eric Topol |
Publisher | Basic Books |
Pages | 388 |
Release | 2019-03-12 |
Genre | Health & Fitness |
ISBN | 1541644646 |
A Science Friday pick for book of the year, 2019 One of America's top doctors reveals how AI will empower physicians and revolutionize patient care Medicine has become inhuman, to disastrous effect. The doctor-patient relationship--the heart of medicine--is broken: doctors are too distracted and overwhelmed to truly connect with their patients, and medical errors and misdiagnoses abound. In Deep Medicine, leading physician Eric Topol reveals how artificial intelligence can help. AI has the potential to transform everything doctors do, from notetaking and medical scans to diagnosis and treatment, greatly cutting down the cost of medicine and reducing human mortality. By freeing physicians from the tasks that interfere with human connection, AI will create space for the real healing that takes place between a doctor who can listen and a patient who needs to be heard. Innovative, provocative, and hopeful, Deep Medicine shows us how the awesome power of AI can make medicine better, for all the humans involved.
Artificial Intelligence and Machine Learning in Public Healthcare
Title | Artificial Intelligence and Machine Learning in Public Healthcare PDF eBook |
Author | KC Santosh |
Publisher | Springer Nature |
Pages | 93 |
Release | 2022-01-01 |
Genre | Technology & Engineering |
ISBN | 9811667683 |
This book discusses and evaluates AI and machine learning (ML) algorithms in dealing with challenges that are primarily related to public health. It also helps find ways in which we can measure possible consequences and societal impacts by taking the following factors into account: open public health issues and common AI solutions (with multiple case studies, such as TB and SARS: COVID-19), AI in sustainable health care, AI in precision medicine and data privacy issues. Public health requires special attention as it drives economy and education system. COVID-19 is an example—a truly infectious disease outbreak. The vision of WHO is to create public health services that can deal with abovementioned crucial challenges by focusing on the following elements: health protection, disease prevention and health promotion. For these issues, in the big data analytics era, AI and ML tools/techniques have potential to improve public health (e.g., existing healthcare solutions and wellness services). In other words, they have proved to be valuable tools not only to analyze/diagnose pathology but also to accelerate decision-making procedure especially when we consider resource-constrained regions.
Data Analytics in Bioinformatics
Title | Data Analytics in Bioinformatics PDF eBook |
Author | Rabinarayan Satpathy |
Publisher | John Wiley & Sons |
Pages | 433 |
Release | 2021-01-20 |
Genre | Computers |
ISBN | 111978560X |
Machine learning techniques are increasingly being used to address problems in computational biology and bioinformatics. Novel machine learning computational techniques to analyze high throughput data in the form of sequences, gene and protein expressions, pathways, and images are becoming vital for understanding diseases and future drug discovery. Machine learning techniques such as Markov models, support vector machines, neural networks, and graphical models have been successful in analyzing life science data because of their capabilities in handling randomness and uncertainty of data noise and in generalization. Machine Learning in Bioinformatics compiles recent approaches in machine learning methods and their applications in addressing contemporary problems in bioinformatics approximating classification and prediction of disease, feature selection, dimensionality reduction, gene selection and classification of microarray data and many more.
Artificial Intelligence and Machine Learning in Healthcare
Title | Artificial Intelligence and Machine Learning in Healthcare PDF eBook |
Author | Arman Kilic |
Publisher | Academic Press |
Pages | 0 |
Release | 2025-10-01 |
Genre | Medical |
ISBN | 012822519X |
Artificial Intelligence and Machine Learning in Healthcare discusses the potential of groundbreaking technologies on the delivery of care. A lot have been said about how artificial intelligence and machine learning can improve healthcare, however there are still many doubts and concerns among health professionals, all of which are addressed in this book. Sections cover History and Basic Overview of AI and ML, with differentiation of supervised, unsupervised and deep learning, Applications of AI and ML in Healthcare, The Future of Healthcare with AI, Challenges to Adopting AI in Healthcare, and ethics and legal processes for implementation.This book is a valuable resource for bioinformaticians, clinicians, graduate students and several members of biomedical field who needs to get up to speed on the revolutionary role of AI and Machine Learning in healthcare. - Provides an overview of AI and ML to the medical practitioner who may not be well versed in these fields - Encompasses a thorough review of what has been accomplished and demonstrated recently in the fields of AI and ML in healthcare - Discusses the future of AI and ML in healthcare, with a review of possible wearable technology and software and how they may be used for medical care