OMICS

OMICS
Title OMICS PDF eBook
Author Debmalya Barh
Publisher CRC Press
Pages 721
Release 2013-03-26
Genre Medical
ISBN 1466562811

Download OMICS Book in PDF, Epub and Kindle

With the advent of new technologies and acquired knowledge, the number of fields in omics and their applications in diverse areas are rapidly increasing in the postgenomics era. Such emerging fields—including pharmacogenomics, toxicogenomics, regulomics, spliceomics, metagenomics, and environomics—present budding solutions to combat global challenges in biomedicine, agriculture, and the environment. OMICS: Applications in Biomedical, Agricultural, and Environmental Sciences provides valuable insights into the applications of modern omics technologies to real-world problems in the life sciences. Filling a gap in the literature, it offers a broad, multidisciplinary view of current and emerging applications of omics in a single volume. Written by highly experienced active researchers, each chapter describes a particular area of omics and the associated technologies and applications. Topics covered include: Proteomics, epigenomics, and pharmacogenomics Toxicogenomics and the assessment of environmental pollutants Applications of plant metabolomics Nutrigenomics and its therapeutic applications Microalgal omics and omics approaches in biofuel production Next-generation sequencing and omics technology for transgenic plant analysis Omics approaches in crop improvement Engineering dark-operative chlorophyll synthesis Computational regulomics Omics techniques for the analysis of RNA splicing New fields, including metagenomics, glycomics, and miRNA Breast cancer biomarkers for early detection Environomics strategies for environmental sustainability This timely book explores a wide range of omics application areas in the biomedical, agricultural, and environmental sciences. Throughout, it highlights working solutions as well as open problems and future challenges. Demonstrating the diversity of omics, it introduces readers to state-of-the-art developments and trends in omics-driven research.

Artificial Intelligence and Bioinformatics Applications for Omics and Multi-Omics Studies

Artificial Intelligence and Bioinformatics Applications for Omics and Multi-Omics Studies
Title Artificial Intelligence and Bioinformatics Applications for Omics and Multi-Omics Studies PDF eBook
Author Angelo Facchiano
Publisher Frontiers Media SA
Pages 160
Release 2024-02-07
Genre Science
ISBN 2832544452

Download Artificial Intelligence and Bioinformatics Applications for Omics and Multi-Omics Studies Book in PDF, Epub and Kindle

Application Of Omics, Ai And Blockchain In Bioinformatics Research

Application Of Omics, Ai And Blockchain In Bioinformatics Research
Title Application Of Omics, Ai And Blockchain In Bioinformatics Research PDF eBook
Author Jeffrey J P Tsai
Publisher World Scientific
Pages 207
Release 2019-10-14
Genre Science
ISBN 9811203598

Download Application Of Omics, Ai And Blockchain In Bioinformatics Research Book in PDF, Epub and Kindle

With the increasing availability of omics data and mounting evidence of the usefulness of computational approaches to tackle multi-level data problems in bioinformatics and biomedical research in this post-genomics era, computational biology has been playing an increasingly important role in paving the way as basis for patient-centric healthcare.Two such areas are: (i) implementing AI algorithms supported by biomedical data would deliver significant benefits/improvements towards the goals of precision medicine (ii) blockchain technology will enable medical doctors to securely and privately build personal healthcare records, and identify the right therapeutic treatments and predict the progression of the diseases.A follow-up in the publication of our book Computation Methods with Applications in Bioinformatics Analysis (2017), topics in this volume include: clinical bioinformatics, omics-based data analysis, Artificial Intelligence (AI), blockchain, big data analytics, drug discovery, RNA-seq analysis, tensor decomposition and Boolean network.

Artificial Intelligence Bioinformatics: Development and Application of Tools for Omics and Inter-Omics Studies

Artificial Intelligence Bioinformatics: Development and Application of Tools for Omics and Inter-Omics Studies
Title Artificial Intelligence Bioinformatics: Development and Application of Tools for Omics and Inter-Omics Studies PDF eBook
Author Angelo Facchiano
Publisher Frontiers Media SA
Pages 175
Release 2020-06-18
Genre
ISBN 2889637522

Download Artificial Intelligence Bioinformatics: Development and Application of Tools for Omics and Inter-Omics Studies Book in PDF, Epub and Kindle

Artificial Intelligence in Bioinformatics

Artificial Intelligence in Bioinformatics
Title Artificial Intelligence in Bioinformatics PDF eBook
Author Mario Cannataro
Publisher Elsevier
Pages 270
Release 2022-05-12
Genre Science
ISBN 0128229292

Download Artificial Intelligence in Bioinformatics Book in PDF, Epub and Kindle

Artificial Intelligence in Bioinformatics: From Omics Analysis to Deep Learning and Network Mining reviews the main applications of the topic, from omics analysis to deep learning and network mining. The book includes a rigorous introduction on bioinformatics, also reviewing how methods are incorporated in tasks and processes. In addition, it presents methods and theory, including content for emergent fields such as Sentiment Analysis and Network Alignment. Other sections survey how Artificial Intelligence is exploited in bioinformatics applications, including sequence analysis, structure analysis, functional analysis, protein classification, omics analysis, biomarker discovery, integrative bioinformatics, protein interaction analysis, metabolic networks analysis, and much more. - Bridges the gap between computer science and bioinformatics, combining an introduction to Artificial Intelligence methods with a systematic review of its applications in the life sciences - Brings readers up-to-speed on current trends and methods in a dynamic and growing field - Provides academic teachers with a complete resource, covering fundamental concepts as well as applications

Learning to Classify Text Using Support Vector Machines

Learning to Classify Text Using Support Vector Machines
Title Learning to Classify Text Using Support Vector Machines PDF eBook
Author Thorsten Joachims
Publisher Springer Science & Business Media
Pages 228
Release 2002-04-30
Genre Computers
ISBN 079237679X

Download Learning to Classify Text Using Support Vector Machines Book in PDF, Epub and Kindle

Based on ideas from Support Vector Machines (SVMs), Learning To Classify Text Using Support Vector Machines presents a new approach to generating text classifiers from examples. The approach combines high performance and efficiency with theoretical understanding and improved robustness. In particular, it is highly effective without greedy heuristic components. The SVM approach is computationally efficient in training and classification, and it comes with a learning theory that can guide real-world applications. Learning To Classify Text Using Support Vector Machines gives a complete and detailed description of the SVM approach to learning text classifiers, including training algorithms, transductive text classification, efficient performance estimation, and a statistical learning model of text classification. In addition, it includes an overview of the field of text classification, making it self-contained even for newcomers to the field. This book gives a concise introduction to SVMs for pattern recognition, and it includes a detailed description of how to formulate text-classification tasks for machine learning.

Data Analytics in Bioinformatics

Data Analytics in Bioinformatics
Title Data Analytics in Bioinformatics PDF eBook
Author Rabinarayan Satpathy
Publisher John Wiley & Sons
Pages 433
Release 2021-01-20
Genre Computers
ISBN 111978560X

Download Data Analytics in Bioinformatics Book in PDF, Epub and Kindle

Machine learning techniques are increasingly being used to address problems in computational biology and bioinformatics. Novel machine learning computational techniques to analyze high throughput data in the form of sequences, gene and protein expressions, pathways, and images are becoming vital for understanding diseases and future drug discovery. Machine learning techniques such as Markov models, support vector machines, neural networks, and graphical models have been successful in analyzing life science data because of their capabilities in handling randomness and uncertainty of data noise and in generalization. Machine Learning in Bioinformatics compiles recent approaches in machine learning methods and their applications in addressing contemporary problems in bioinformatics approximating classification and prediction of disease, feature selection, dimensionality reduction, gene selection and classification of microarray data and many more.