Arithmetic of p-adic Modular Forms

Arithmetic of p-adic Modular Forms
Title Arithmetic of p-adic Modular Forms PDF eBook
Author Fernando Q. Gouvea
Publisher Springer
Pages 129
Release 2006-11-14
Genre Mathematics
ISBN 3540388540

Download Arithmetic of p-adic Modular Forms Book in PDF, Epub and Kindle

The central topic of this research monograph is the relation between p-adic modular forms and p-adic Galois representations, and in particular the theory of deformations of Galois representations recently introduced by Mazur. The classical theory of modular forms is assumed known to the reader, but the p-adic theory is reviewed in detail, with ample intuitive and heuristic discussion, so that the book will serve as a convenient point of entry to research in that area. The results on the U operator and on Galois representations are new, and will be of interest even to the experts. A list of further problems in the field is included to guide the beginner in his research. The book will thus be of interest to number theorists who wish to learn about p-adic modular forms, leading them rapidly to interesting research, and also to the specialists in the subject.

Arithmetic of P-Adic Modular Forms

Arithmetic of P-Adic Modular Forms
Title Arithmetic of P-Adic Modular Forms PDF eBook
Author Fernando Q. Gouvea
Publisher
Pages 132
Release 2014-09-01
Genre
ISBN 9783662193846

Download Arithmetic of P-Adic Modular Forms Book in PDF, Epub and Kindle

p-Adic Automorphic Forms on Shimura Varieties

p-Adic Automorphic Forms on Shimura Varieties
Title p-Adic Automorphic Forms on Shimura Varieties PDF eBook
Author Haruzo Hida
Publisher Springer Science & Business Media
Pages 414
Release 2004-05-10
Genre Mathematics
ISBN 9780387207117

Download p-Adic Automorphic Forms on Shimura Varieties Book in PDF, Epub and Kindle

This book covers the following three topics in a manner accessible to graduate students who have an understanding of algebraic number theory and scheme theoretic algebraic geometry: 1. An elementary construction of Shimura varieties as moduli of abelian schemes. 2. p-adic deformation theory of automorphic forms on Shimura varieties. 3. A simple proof of irreducibility of the generalized Igusa tower over the Shimura variety. The book starts with a detailed study of elliptic and Hilbert modular forms and reaches to the forefront of research of Shimura varieties associated with general classical groups. The method of constructing p-adic analytic families and the proof of irreducibility was recently discovered by the author. The area covered in this book is now a focal point of research worldwide with many far-reaching applications that have led to solutions of longstanding problems and conjectures. Specifically, the use of p-adic elliptic and Hilbert modular forms have proven essential in recent breakthroughs in number theory (for example, the proof of Fermat's Last Theorem and the Shimura-Taniyama conjecture by A. Wiles and others). Haruzo Hida is Professor of Mathematics at University of California, Los Angeles. His previous books include Modular Forms and Galois Cohomology (Cambridge University Press 2000) and Geometric Modular Forms and Elliptic Curves (World Scientific Publishing Company 2000).

P-adic Aspects Of Modular Forms

P-adic Aspects Of Modular Forms
Title P-adic Aspects Of Modular Forms PDF eBook
Author Baskar Balasubramanyam
Publisher World Scientific
Pages 342
Release 2016-06-14
Genre Mathematics
ISBN 9814719242

Download P-adic Aspects Of Modular Forms Book in PDF, Epub and Kindle

The aim of this book is to give a systematic exposition of results in some important cases where p-adic families and p-adic L-functions are studied. We first look at p-adic families in the following cases: general linear groups, symplectic groups and definite unitary groups. We also look at applications of this theory to modularity lifting problems. We finally consider p-adic L-functions for GL(2), the p-adic adjoint L-functions and some cases of higher GL(n).

Supersingular P-adic L-functions, Maass-Shimura Operators and Waldspurger Formulas

Supersingular P-adic L-functions, Maass-Shimura Operators and Waldspurger Formulas
Title Supersingular P-adic L-functions, Maass-Shimura Operators and Waldspurger Formulas PDF eBook
Author Daniel Kriz
Publisher Princeton University Press
Pages 280
Release 2021-11-09
Genre Mathematics
ISBN 0691216479

Download Supersingular P-adic L-functions, Maass-Shimura Operators and Waldspurger Formulas Book in PDF, Epub and Kindle

A groundbreaking contribution to number theory that unifies classical and modern results This book develops a new theory of p-adic modular forms on modular curves, extending Katz's classical theory to the supersingular locus. The main novelty is to move to infinite level and extend coefficients to period sheaves coming from relative p-adic Hodge theory. This makes it possible to trivialize the Hodge bundle on the infinite-level modular curve by a "canonical differential" that restricts to the Katz canonical differential on the ordinary Igusa tower. Daniel Kriz defines generalized p-adic modular forms as sections of relative period sheaves transforming under the Galois group of the modular curve by weight characters. He introduces the fundamental de Rham period, measuring the position of the Hodge filtration in relative de Rham cohomology. This period can be viewed as a counterpart to Scholze's Hodge-Tate period, and the two periods satisfy a Legendre-type relation. Using these periods, Kriz constructs splittings of the Hodge filtration on the infinite-level modular curve, defining p-adic Maass-Shimura operators that act on generalized p-adic modular forms as weight-raising operators. Through analysis of the p-adic properties of these Maass-Shimura operators, he constructs new p-adic L-functions interpolating central critical Rankin-Selberg L-values, giving analogues of the p-adic L-functions of Katz, Bertolini-Darmon-Prasanna, and Liu-Zhang-Zhang for imaginary quadratic fields in which p is inert or ramified. These p-adic L-functions yield new p-adic Waldspurger formulas at special values.

Lectures on Hilbert Modular Varieties and Modular Forms

Lectures on Hilbert Modular Varieties and Modular Forms
Title Lectures on Hilbert Modular Varieties and Modular Forms PDF eBook
Author Eyal Zvi Goren
Publisher American Mathematical Soc.
Pages 282
Release 2002
Genre Mathematics
ISBN 082181995X

Download Lectures on Hilbert Modular Varieties and Modular Forms Book in PDF, Epub and Kindle

This book is devoted to certain aspects of the theory of $p$-adic Hilbert modular forms and moduli spaces of abelian varieties with real multiplication. The theory of $p$-adic modular forms is presented first in the elliptic case, introducing the reader to key ideas of N. M. Katz and J.-P. Serre. It is re-interpreted from a geometric point of view, which is developed to present the rudiments of a similar theory for Hilbert modular forms. The theory of moduli spaces of abelianvarieties with real multiplication is presented first very explicitly over the complex numbers. Aspects of the general theory are then exposed, in particular, local deformation theory of abelian varieties in positive characteristic. The arithmetic of $p$-adic Hilbert modular forms and the geometry ofmoduli spaces of abelian varieties are related. This relation is used to study $q$-expansions of Hilbert modular forms, on the one hand, and stratifications of moduli spaces on the other hand. The book is addressed to graduate students and non-experts. It attempts to provide the necessary background to all concepts exposed in it. It may serve as a textbook for an advanced graduate course.

Modular Forms, a Computational Approach

Modular Forms, a Computational Approach
Title Modular Forms, a Computational Approach PDF eBook
Author William A. Stein
Publisher American Mathematical Soc.
Pages 290
Release 2007-02-13
Genre Mathematics
ISBN 0821839608

Download Modular Forms, a Computational Approach Book in PDF, Epub and Kindle

This marvellous and highly original book fills a significant gap in the extensive literature on classical modular forms. This is not just yet another introductory text to this theory, though it could certainly be used as such in conjunction with more traditional treatments. Its novelty lies in its computational emphasis throughout: Stein not only defines what modular forms are, but shows in illuminating detail how one can compute everything about them in practice. This is illustrated throughout the book with examples from his own (entirely free) software package SAGE, which really bring the subject to life while not detracting in any way from its theoretical beauty. The author is the leading expert in computations with modular forms, and what he says on this subject is all tried and tested and based on his extensive experience. As well as being an invaluable companion to those learning the theory in a more traditional way, this book will be a great help to those who wish to use modular forms in applications, such as in the explicit solution of Diophantine equations. There is also a useful Appendix by Gunnells on extensions to more general modular forms, which has enough in it to inspire many PhD theses for years to come. While the book's main readership will be graduate students in number theory, it will also be accessible to advanced undergraduates and useful to both specialists and non-specialists in number theory. --John E. Cremona, University of Nottingham William Stein is an associate professor of mathematics at the University of Washington at Seattle. He earned a PhD in mathematics from UC Berkeley and has held positions at Harvard University and UC San Diego. His current research interests lie in modular forms, elliptic curves, and computational mathematics.