Arithmetic Compactifications of PEL-type Shimura Varieties
Title | Arithmetic Compactifications of PEL-type Shimura Varieties PDF eBook |
Author | Kai-Wen Lan |
Publisher | Princeton University Press |
Pages | 587 |
Release | 2013-03-24 |
Genre | Mathematics |
ISBN | 0691156549 |
By studying the degeneration of abelian varieties with PEL structures, this book explains the compactifications of smooth integral models of all PEL-type Shimura varieties, providing the logical foundation for several exciting recent developments. The book is designed to be accessible to graduate students who have an understanding of schemes and abelian varieties. PEL-type Shimura varieties, which are natural generalizations of modular curves, are useful for studying the arithmetic properties of automorphic forms and automorphic representations, and they have played important roles in the development of the Langlands program. As with modular curves, it is desirable to have integral models of compactifications of PEL-type Shimura varieties that can be described in sufficient detail near the boundary. This book explains in detail the following topics about PEL-type Shimura varieties and their compactifications: A construction of smooth integral models of PEL-type Shimura varieties by defining and representing moduli problems of abelian schemes with PEL structures An analysis of the degeneration of abelian varieties with PEL structures into semiabelian schemes, over noetherian normal complete adic base rings A construction of toroidal and minimal compactifications of smooth integral models of PEL-type Shimura varieties, with detailed descriptions of their structure near the boundary Through these topics, the book generalizes the theory of degenerations of polarized abelian varieties and the application of that theory to the construction of toroidal and minimal compactifications of Siegel moduli schemes over the integers (as developed by Mumford, Faltings, and Chai).
Arithmetic Compactifications of PEL-Type Shimura Varieties
Title | Arithmetic Compactifications of PEL-Type Shimura Varieties PDF eBook |
Author | Kai-Wen Lan |
Publisher | Princeton University Press |
Pages | 584 |
Release | 2013-03-21 |
Genre | Mathematics |
ISBN | 1400846013 |
By studying the degeneration of abelian varieties with PEL structures, this book explains the compactifications of smooth integral models of all PEL-type Shimura varieties, providing the logical foundation for several exciting recent developments. The book is designed to be accessible to graduate students who have an understanding of schemes and abelian varieties. PEL-type Shimura varieties, which are natural generalizations of modular curves, are useful for studying the arithmetic properties of automorphic forms and automorphic representations, and they have played important roles in the development of the Langlands program. As with modular curves, it is desirable to have integral models of compactifications of PEL-type Shimura varieties that can be described in sufficient detail near the boundary. This book explains in detail the following topics about PEL-type Shimura varieties and their compactifications: A construction of smooth integral models of PEL-type Shimura varieties by defining and representing moduli problems of abelian schemes with PEL structures An analysis of the degeneration of abelian varieties with PEL structures into semiabelian schemes, over noetherian normal complete adic base rings A construction of toroidal and minimal compactifications of smooth integral models of PEL-type Shimura varieties, with detailed descriptions of their structure near the boundary Through these topics, the book generalizes the theory of degenerations of polarized abelian varieties and the application of that theory to the construction of toroidal and minimal compactifications of Siegel moduli schemes over the integers (as developed by Mumford, Faltings, and Chai).
Compactifications Of Pel-type Shimura Varieties And Kuga Families With Ordinary Loci
Title | Compactifications Of Pel-type Shimura Varieties And Kuga Families With Ordinary Loci PDF eBook |
Author | Kai-wen Lan |
Publisher | #N/A |
Pages | 580 |
Release | 2017-07-21 |
Genre | Mathematics |
ISBN | 9813207345 |
This book is a comprehensive treatise on the partial toroidal and minimal compactifications of the ordinary loci of PEL-type Shimura varieties and Kuga families, and on the canonical and subcanonical extensions of automorphic bundles. The results in this book serve as the logical foundation of several recent developments in the theory of p-adic automorphic forms; and of the author's work with Harris, Taylor, and Thorne on the construction of Galois representations without any polarizability conditions, which is a major breakthrough in the Langlands program.This book is important for active researchers and graduate students who need to understand the above-mentioned recent works, and is written with such users of the theory in mind, providing plenty of explanations and background materials, which should be helpful for people working in similar areas. It also contains precise internal and external references, and an index of notation and terminologies. These are useful for readers to quickly locate materials they need.
Compactifications of PEL-type Shimura Varieties and Kuga Families with Ordinary Loci
Title | Compactifications of PEL-type Shimura Varieties and Kuga Families with Ordinary Loci PDF eBook |
Author | Kai-Wen Lan |
Publisher | World Scientific Publishing Company |
Pages | 0 |
Release | 2018 |
Genre | Arithmetical algebraic geometry |
ISBN | 9789813207325 |
This book is a comprehensive treatise on the partial toroidal and minimal compactifications of the ordinary loci of PEL-type Shimura varieties and Kuga families, and on the canonical and subcanonical extensions of automorphic bundles. The results in this book serve as the logical foundation of several recent developments in the theory of p-adic automorphic forms; and of the author's work with Harris, Taylor, and Thorne on the construction of Galois representations without any polarizability conditions, which is a major breakthrough in the Langlands program. This book is important for active researchers and graduate students who need to understand the above-mentioned recent works, and is written with such users of the theory in mind, providing plenty of explanations and background materials, which should be helpful for people working in similar areas. It also contains precise internal and external references, and an index of notation and terminologies. These are useful for readers to quickly locate materials they need.
Cohomology of Arithmetic Groups
Title | Cohomology of Arithmetic Groups PDF eBook |
Author | James W. Cogdell |
Publisher | Springer |
Pages | 310 |
Release | 2018-08-18 |
Genre | Mathematics |
ISBN | 3319955497 |
This book discusses the mathematical interests of Joachim Schwermer, who throughout his career has focused on the cohomology of arithmetic groups, automorphic forms and the geometry of arithmetic manifolds. To mark his 66th birthday, the editors brought together mathematical experts to offer an overview of the current state of research in these and related areas. The result is this book, with contributions ranging from topology to arithmetic. It probes the relation between cohomology of arithmetic groups and automorphic forms and their L-functions, and spans the range from classical Bianchi groups to the theory of Shimura varieties. It is a valuable reference for both experts in the fields and for graduate students and postdocs wanting to discover where the current frontiers lie.
On the Cohomology of Certain Non-Compact Shimura Varieties
Title | On the Cohomology of Certain Non-Compact Shimura Varieties PDF eBook |
Author | Sophie Morel |
Publisher | Princeton University Press |
Pages | 230 |
Release | 2010-01-31 |
Genre | Mathematics |
ISBN | 0691142920 |
This book studies the intersection cohomology of the Shimura varieties associated to unitary groups of any rank over Q. In general, these varieties are not compact. The intersection cohomology of the Shimura variety associated to a reductive group G carries commuting actions of the absolute Galois group of the reflex field and of the group G(Af) of finite adelic points of G. The second action can be studied on the set of complex points of the Shimura variety. In this book, Sophie Morel identifies the Galois action--at good places--on the G(Af)-isotypical components of the cohomology. Morel uses the method developed by Langlands, Ihara, and Kottwitz, which is to compare the Grothendieck-Lefschetz fixed point formula and the Arthur-Selberg trace formula. The first problem, that of applying the fixed point formula to the intersection cohomology, is geometric in nature and is the object of the first chapter, which builds on Morel's previous work. She then turns to the group-theoretical problem of comparing these results with the trace formula, when G is a unitary group over Q. Applications are then given. In particular, the Galois representation on a G(Af)-isotypical component of the cohomology is identified at almost all places, modulo a non-explicit multiplicity. Morel also gives some results on base change from unitary groups to general linear groups.
Shimura Varieties
Title | Shimura Varieties PDF eBook |
Author | Thomas Haines |
Publisher | Cambridge University Press |
Pages | 341 |
Release | 2020-02-20 |
Genre | Mathematics |
ISBN | 1108704867 |
This volume forms the sequel to "On the stabilization of the trace formula", published by International Press of Boston, Inc., 2011