Arc Schemes And Singularities
Title | Arc Schemes And Singularities PDF eBook |
Author | David Bourqui |
Publisher | World Scientific |
Pages | 312 |
Release | 2020-03-05 |
Genre | Mathematics |
ISBN | 1786347210 |
This title introduces the theory of arc schemes in algebraic geometry and singularity theory, with special emphasis on recent developments around the Nash problem for surfaces. The main challenges are to understand the global and local structure of arc schemes, and how they relate to the nature of the singularities on the variety. Since the arc scheme is an infinite dimensional object, new tools need to be developed to give a precise meaning to the notion of a singular point of the arc scheme.Other related topics are also explored, including motivic integration and dual intersection complexes of resolutions of singularities. Written by leading international experts, it offers a broad overview of different applications of arc schemes in algebraic geometry, singularity theory and representation theory.
A Celebration of John F. Nash Jr.
Title | A Celebration of John F. Nash Jr. PDF eBook |
Author | Harold W. Kuhn |
Publisher | Duke University Press |
Pages | 512 |
Release | 1996 |
Genre | Business & Economics |
ISBN | 9780822317821 |
This collection celebrates the pathbreaking work in game theory and mathematics of John F. Nash Jr., winner of the 1994 Nobel Prize in Economics. Nash's analysis of equilibria in the theory of non-cooperative games has had a major impact on modern economic theory. This book, also published as volume 81 of the Duke Mathematical Journal, includes an important, but previously unpublished paper by Nash; the proceedings of the Nobel seminar held in Stockholm on December 8, 1994 in his honor; and papers by distinguished mathematicians and economists written in response to and in honor of Nash's pioneering contributions to those fields. In 1950, when he was 22 years old, Nash presented his key idea--the Nash equilibrium--in the Ph.D. thesis he submitted to the Mathematics Department at Princeton University. In that paper, he defined a new concept of equilibrium and used methods from topology to prove the existence of an equilibrium point for n-person, finite, non-cooperative games, that is, for games in which the number of possible strategies are limited, no communication is allowed between the players, and n represents the number of players. The Nash equilibrium point is reached when none of the players can improve their position by changing strategies. By taking into account situations involving more than two players, specifically the general n-player game, Nash built significantly on the previous work of John Von Neumann and Oskar Morgenstern. Contributors. Abbas Bahri, Eric A. Carlen, Ennio De Giorgi, Charles Fefferman, Srihari Govidan, John C. Harsanyi, H. Hoffer, Carlos E. Kenig, S. Klainerman, Harold F. Kuhn, Michael Loss, William F. Lucas, M. Machedon, Roger B. Myerson, Raghavan Narasimhan, John F. Nash Jr., Louis Nirenberg, Jill Pipher, Zeév Rudnick, Peter Sarnak, Michael Shub, Steve Smale, Robert Wilson, K. Wysocki, E. Zehnder
Algebraic Geometry and Singularities
Title | Algebraic Geometry and Singularities PDF eBook |
Author | Antonio Campillo Lopez |
Publisher | Birkhäuser |
Pages | 418 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 3034890206 |
The focus of this volume lies on singularity theory in algebraic geometry. It includes papers documenting recent and original developments and methods in subjects such as resolution of singularities, D-module theory, singularities of maps and geometry of curves. The papers originate from the Third International Conference on Algebraic Geometry held in La Rbida, Spain, in December 1991. Since then, the articles have undergone a meticulous process of refereeing and improvement, and they have been organized into a comprehensive account of the state of the art in this field.
Introduction to Singularities
Title | Introduction to Singularities PDF eBook |
Author | Shihoko Ishii |
Publisher | Springer |
Pages | 242 |
Release | 2018-09-21 |
Genre | Mathematics |
ISBN | 4431568379 |
This book is an introduction to singularities for graduate students and researchers. Algebraic geometry is said to have originated in the seventeenth century with the famous work Discours de la méthode pour bien conduire sa raison, et chercher la vérité dans les sciences by Descartes. In that book he introduced coordinates to the study of geometry. After its publication, research on algebraic varieties developed steadily. Many beautiful results emerged in mathematicians’ works. First, mostly non-singular varieties were studied. In the past three decades, however, it has become clear that singularities are necessary for us to have a good description of the framework of varieties. For example, it is impossible to formulate minimal model theory for higher-dimensional cases without singularities. A remarkable fact is that the study of singularities is developing and people are beginning to see that singularities are interesting and can be handled by human beings. This book is a handy introduction to singularities for anyone interested in singularities. The focus is on an isolated singularity in an algebraic variety. After preparation of varieties, sheaves, and homological algebra, some known results about 2-dimensional isolated singularities are introduced. Then a classification of higher-dimensional isolated singularities is shown according to plurigenera and the behavior of singularities under a deformation is studied. In the second edition, brief descriptions about recent remarkable developments of the researches are added as the last chapter.
Handbook of Geometry and Topology of Singularities IV
Title | Handbook of Geometry and Topology of Singularities IV PDF eBook |
Author | José Luis Cisneros-Molina |
Publisher | Springer Nature |
Pages | 622 |
Release | 2023-11-10 |
Genre | Mathematics |
ISBN | 3031319257 |
This is the fourth volume of the Handbook of Geometry and Topology of Singularities, a series that aims to provide an accessible account of the state of the art of the subject, its frontiers, and its interactions with other areas of research. This volume consists of twelve chapters which provide an in-depth and reader-friendly survey of various important aspects of singularity theory. Some of these complement topics previously explored in volumes I to III. Amongst the topics studied in this volume are the Nash blow up, the space of arcs in algebraic varieties, determinantal singularities, Lipschitz geometry, indices of vector fields and 1-forms, motivic characteristic classes, the Hilbert-Samuel multiplicity and comparison theorems that spring from the classical De Rham complex. Singularities are ubiquitous in mathematics and science in general. Singularity theory is a crucible where different types of mathematical problems interact, surprising connections are born and simple questions lead to ideas which resonate in other subjects. Authored by world experts, the various contributions deal with both classical material and modern developments, covering a wide range of topics which are linked to each other in fundamental ways. The book is addressed to graduate students and newcomers to the theory, as well as to specialists who can use it as a guidebook.
Algebraic Geometry
Title | Algebraic Geometry PDF eBook |
Author | Dan Abramovich |
Publisher | American Mathematical Soc. |
Pages | 539 |
Release | 2009 |
Genre | Mathematics |
ISBN | 0821847031 |
Offers information on various technical tools, from jet schemes and derived categories to algebraic stacks. This book delves into the geometry of various moduli spaces, including those of stable curves, stable maps, coherent sheaves, and abelian varieties. It describes various advances in higher-dimensional bi rational geometry.
Algebraic Geometry: Salt Lake City 2015
Title | Algebraic Geometry: Salt Lake City 2015 PDF eBook |
Author | Tommaso de Fernex |
Publisher | American Mathematical Soc. |
Pages | 674 |
Release | 2018-06-01 |
Genre | Mathematics |
ISBN | 1470435772 |
This is Part 1 of a two-volume set. Since Oscar Zariski organized a meeting in 1954, there has been a major algebraic geometry meeting every decade: Woods Hole (1964), Arcata (1974), Bowdoin (1985), Santa Cruz (1995), and Seattle (2005). The American Mathematical Society has supported these summer institutes for over 50 years. Their proceedings volumes have been extremely influential, summarizing the state of algebraic geometry at the time and pointing to future developments. The most recent Summer Institute in Algebraic Geometry was held July 2015 at the University of Utah in Salt Lake City, sponsored by the AMS with the collaboration of the Clay Mathematics Institute. This volume includes surveys growing out of plenary lectures and seminar talks during the meeting. Some present a broad overview of their topics, while others develop a distinctive perspective on an emerging topic. Topics span both complex algebraic geometry and arithmetic questions, specifically, analytic techniques, enumerative geometry, moduli theory, derived categories, birational geometry, tropical geometry, Diophantine questions, geometric representation theory, characteristic and -adic tools, etc. The resulting articles will be important references in these areas for years to come.