Approximation Theory XVI

Approximation Theory XVI
Title Approximation Theory XVI PDF eBook
Author Gregory E. Fasshauer
Publisher Springer Nature
Pages 256
Release 2021-01-04
Genre Mathematics
ISBN 3030574644

Download Approximation Theory XVI Book in PDF, Epub and Kindle

These proceedings are based on the international conference Approximation Theory XVI held on May 19–22, 2019 in Nashville, Tennessee. The conference was the sixteenth in a series of meetings in Approximation Theory held at various locations in the United States. Over 130 mathematicians from 20 countries attended. The book contains two longer survey papers on nonstationary subdivision and Prony’s method, along with 11 research papers on a variety of topics in approximation theory, including Balian-Low theorems, butterfly spline interpolation, cubature rules, Hankel and Toeplitz matrices, phase retrieval, positive definite kernels, quasi-interpolation operators, stochastic collocation, the gradient conjecture, time-variant systems, and trivariate finite elements. The book should be of interest to mathematicians, engineers, and computer scientists working in approximation theory, computer-aided geometric design, numerical analysis, and related approximation areas.

Approximation Theory and Methods

Approximation Theory and Methods
Title Approximation Theory and Methods PDF eBook
Author M. J. D. Powell
Publisher Cambridge University Press
Pages 356
Release 1981-03-31
Genre Mathematics
ISBN 9780521295147

Download Approximation Theory and Methods Book in PDF, Epub and Kindle

Most functions that occur in mathematics cannot be used directly in computer calculations. Instead they are approximated by manageable functions such as polynomials and piecewise polynomials. The general theory of the subject and its application to polynomial approximation are classical, but piecewise polynomials have become far more useful during the last twenty years. Thus many important theoretical properties have been found recently and many new techniques for the automatic calculation of approximations to prescribed accuracy have been developed. This book gives a thorough and coherent introduction to the theory that is the basis of current approximation methods. Professor Powell describes and analyses the main techniques of calculation supplying sufficient motivation throughout the book to make it accessible to scientists and engineers who require approximation methods for practical needs. Because the book is based on a course of lectures to third-year undergraduates in mathematics at Cambridge University, sufficient attention is given to theory to make it highly suitable as a mathematical textbook at undergraduate or postgraduate level.

On Approximation Theory

On Approximation Theory
Title On Approximation Theory PDF eBook
Author Paul Leo Butzer
Publisher
Pages 286
Release 1964
Genre Approximate computation
ISBN

Download On Approximation Theory Book in PDF, Epub and Kindle

Fundamentals of Approximation Theory

Fundamentals of Approximation Theory
Title Fundamentals of Approximation Theory PDF eBook
Author Hrushikesh Narhar Mhaskar
Publisher CRC Press
Pages 580
Release 2000
Genre Mathematics
ISBN 9780849309397

Download Fundamentals of Approximation Theory Book in PDF, Epub and Kindle

The field of approximation theory has become so vast that it intersects with every other branch of analysis and plays an increasingly important role in applications in the applied sciences and engineering. Fundamentals of Approximation Theory presents a systematic, in-depth treatment of some basic topics in approximation theory designed to emphasize the rich connections of the subject with other areas of study. With an approach that moves smoothly from the very concrete to more and more abstract levels, this text provides an outstanding blend of classical and abstract topics. The first five chapters present the core of information that readers need to begin research in this domain. The final three chapters the authors devote to special topics-splined functions, orthogonal polynomials, and best approximation in normed linear spaces- that illustrate how the core material applies in other contexts and expose readers to the use of complex analytic methods in approximation theory. Each chapter contains problems of varying difficulty, including some drawn from contemporary research. Perfect for an introductory graduate-level class, Fundamentals of Approximation Theory also contains enough advanced material to serve more specialized courses at the doctoral level and to interest scientists and engineers.

An Introduction to Measure Theory

An Introduction to Measure Theory
Title An Introduction to Measure Theory PDF eBook
Author Terence Tao
Publisher American Mathematical Soc.
Pages 206
Release 2021-09-03
Genre Education
ISBN 1470466406

Download An Introduction to Measure Theory Book in PDF, Epub and Kindle

This is a graduate text introducing the fundamentals of measure theory and integration theory, which is the foundation of modern real analysis. The text focuses first on the concrete setting of Lebesgue measure and the Lebesgue integral (which in turn is motivated by the more classical concepts of Jordan measure and the Riemann integral), before moving on to abstract measure and integration theory, including the standard convergence theorems, Fubini's theorem, and the Carathéodory extension theorem. Classical differentiation theorems, such as the Lebesgue and Rademacher differentiation theorems, are also covered, as are connections with probability theory. The material is intended to cover a quarter or semester's worth of material for a first graduate course in real analysis. There is an emphasis in the text on tying together the abstract and the concrete sides of the subject, using the latter to illustrate and motivate the former. The central role of key principles (such as Littlewood's three principles) as providing guiding intuition to the subject is also emphasized. There are a large number of exercises throughout that develop key aspects of the theory, and are thus an integral component of the text. As a supplementary section, a discussion of general problem-solving strategies in analysis is also given. The last three sections discuss optional topics related to the main matter of the book.

Nevanlinna Theory And Its Relation To Diophantine Approximation

Nevanlinna Theory And Its Relation To Diophantine Approximation
Title Nevanlinna Theory And Its Relation To Diophantine Approximation PDF eBook
Author Min Ru
Publisher World Scientific
Pages 338
Release 2001-06-06
Genre Mathematics
ISBN 9814492485

Download Nevanlinna Theory And Its Relation To Diophantine Approximation Book in PDF, Epub and Kindle

It was discovered recently that Nevanlinna theory and Diophantine approximation bear striking similarities and connections. This book provides an introduction to both Nevanlinna theory and Diophantine approximation, with emphasis on the analogy between these two subjects.Each chapter is divided into part A and part B. Part A deals with Nevanlinna theory and part B covers Diophantine approximation. At the end of each chapter, a table is provided to indicate the correspondence of theorems.

Convex Analysis and Monotone Operator Theory in Hilbert Spaces

Convex Analysis and Monotone Operator Theory in Hilbert Spaces
Title Convex Analysis and Monotone Operator Theory in Hilbert Spaces PDF eBook
Author Heinz H. Bauschke
Publisher Springer
Pages 624
Release 2017-02-28
Genre Mathematics
ISBN 3319483110

Download Convex Analysis and Monotone Operator Theory in Hilbert Spaces Book in PDF, Epub and Kindle

This reference text, now in its second edition, offers a modern unifying presentation of three basic areas of nonlinear analysis: convex analysis, monotone operator theory, and the fixed point theory of nonexpansive operators. Taking a unique comprehensive approach, the theory is developed from the ground up, with the rich connections and interactions between the areas as the central focus, and it is illustrated by a large number of examples. The Hilbert space setting of the material offers a wide range of applications while avoiding the technical difficulties of general Banach spaces. The authors have also drawn upon recent advances and modern tools to simplify the proofs of key results making the book more accessible to a broader range of scholars and users. Combining a strong emphasis on applications with exceptionally lucid writing and an abundance of exercises, this text is of great value to a large audience including pure and applied mathematicians as well as researchers in engineering, data science, machine learning, physics, decision sciences, economics, and inverse problems. The second edition of Convex Analysis and Monotone Operator Theory in Hilbert Spaces greatly expands on the first edition, containing over 140 pages of new material, over 270 new results, and more than 100 new exercises. It features a new chapter on proximity operators including two sections on proximity operators of matrix functions, in addition to several new sections distributed throughout the original chapters. Many existing results have been improved, and the list of references has been updated. Heinz H. Bauschke is a Full Professor of Mathematics at the Kelowna campus of the University of British Columbia, Canada. Patrick L. Combettes, IEEE Fellow, was on the faculty of the City University of New York and of Université Pierre et Marie Curie – Paris 6 before joining North Carolina State University as a Distinguished Professor of Mathematics in 2016.