Approximation Theory and Analytic Inequalities

Approximation Theory and Analytic Inequalities
Title Approximation Theory and Analytic Inequalities PDF eBook
Author Themistocles M. Rassias
Publisher Springer Nature
Pages 546
Release 2021-07-21
Genre Mathematics
ISBN 3030606228

Download Approximation Theory and Analytic Inequalities Book in PDF, Epub and Kindle

This contributed volume focuses on various important areas of mathematics in which approximation methods play an essential role. It features cutting-edge research on a wide spectrum of analytic inequalities with emphasis on differential and integral inequalities in the spirit of functional analysis, operator theory, nonlinear analysis, variational calculus, featuring a plethora of applications, making this work a valuable resource. The reader will be exposed to convexity theory, polynomial inequalities, extremal problems, prediction theory, fixed point theory for operators, PDEs, fractional integral inequalities, multidimensional numerical integration, Gauss–Jacobi and Hermite–Hadamard type inequalities, Hilbert-type inequalities, and Ulam’s stability of functional equations. Contributions have been written by eminent researchers, providing up-to-date information and several results which may be useful to a wide readership including graduate students and researchers working in mathematics, physics, economics, operational research, and their interconnections.

Analytic Number Theory, Approximation Theory, and Special Functions

Analytic Number Theory, Approximation Theory, and Special Functions
Title Analytic Number Theory, Approximation Theory, and Special Functions PDF eBook
Author Gradimir V. Milovanović
Publisher Springer
Pages 873
Release 2014-07-08
Genre Mathematics
ISBN 149390258X

Download Analytic Number Theory, Approximation Theory, and Special Functions Book in PDF, Epub and Kindle

This book, in honor of Hari M. Srivastava, discusses essential developments in mathematical research in a variety of problems. It contains thirty-five articles, written by eminent scientists from the international mathematical community, including both research and survey works. Subjects covered include analytic number theory, combinatorics, special sequences of numbers and polynomials, analytic inequalities and applications, approximation of functions and quadratures, orthogonality and special and complex functions. The mathematical results and open problems discussed in this book are presented in a simple and self-contained manner. The book contains an overview of old and new results, methods, and theories toward the solution of longstanding problems in a wide scientific field, as well as new results in rapidly progressing areas of research. The book will be useful for researchers and graduate students in the fields of mathematics, physics and other computational and applied sciences.

Differential and Integral Inequalities

Differential and Integral Inequalities
Title Differential and Integral Inequalities PDF eBook
Author Dorin Andrica
Publisher Springer Nature
Pages 848
Release 2019-11-14
Genre Mathematics
ISBN 3030274071

Download Differential and Integral Inequalities Book in PDF, Epub and Kindle

Theories, methods and problems in approximation theory and analytic inequalities with a focus on differential and integral inequalities are analyzed in this book. Fundamental and recent developments are presented on the inequalities of Abel, Agarwal, Beckenbach, Bessel, Cauchy–Hadamard, Chebychev, Markov, Euler’s constant, Grothendieck, Hilbert, Hardy, Carleman, Landau–Kolmogorov, Carlson, Bernstein–Mordell, Gronwall, Wirtinger, as well as inequalities of functions with their integrals and derivatives. Each inequality is discussed with proven results, examples and various applications. Graduate students and advanced research scientists in mathematical analysis will find this reference essential to their understanding of differential and integral inequalities. Engineers, economists, and physicists will find the highly applicable inequalities practical and useful to their research.

Mathematical Analysis, Approximation Theory and Their Applications

Mathematical Analysis, Approximation Theory and Their Applications
Title Mathematical Analysis, Approximation Theory and Their Applications PDF eBook
Author Themistocles M. Rassias
Publisher Springer
Pages 745
Release 2016-06-03
Genre Mathematics
ISBN 3319312812

Download Mathematical Analysis, Approximation Theory and Their Applications Book in PDF, Epub and Kindle

Designed for graduate students, researchers, and engineers in mathematics, optimization, and economics, this self-contained volume presents theory, methods, and applications in mathematical analysis and approximation theory. Specific topics include: approximation of functions by linear positive operators with applications to computer aided geometric design, numerical analysis, optimization theory, and solutions of differential equations. Recent and significant developments in approximation theory, special functions and q-calculus along with their applications to mathematics, engineering, and social sciences are discussed and analyzed. Each chapter enriches the understanding of current research problems and theories in pure and applied research.

Approximation Theory and Analytic Inequalities

Approximation Theory and Analytic Inequalities
Title Approximation Theory and Analytic Inequalities PDF eBook
Author Themistocles M. Rassias
Publisher
Pages 0
Release 2021
Genre
ISBN 9783030606237

Download Approximation Theory and Analytic Inequalities Book in PDF, Epub and Kindle

This contributed volume focuses on various important areas of mathematics in which approximation methods play an essential role. It features cutting-edge research on a wide spectrum of analytic inequalities with emphasis on differential and integral inequalities in the spirit of functional analysis, operator theory, nonlinear analysis, variational calculus, featuring a plethora of applications, making this work a valuable resource. The reader will be exposed to convexity theory, polynomial inequalities, extremal problems, prediction theory, fixed point theory for operators, PDEs, fractional integral inequalities, multidimensional numerical integration, Gauss-Jacobi and Hermite-Hadamard type inequalities, Hilbert-type inequalities, and Ulam's stability of functional equations. Contributions have been written by eminent researchers, providing up-to-date information and several results which may be useful to a wide readership including graduate students and researchers working in mathematics, physics, economics, operational research, and their interconnections.

Approximation Theory

Approximation Theory
Title Approximation Theory PDF eBook
Author George A. Anastassiou
Publisher Springer Science & Business Media
Pages 554
Release 1999-12-22
Genre Mathematics
ISBN 9780817641511

Download Approximation Theory Book in PDF, Epub and Kindle

We study in Part I of this monograph the computational aspect of almost all moduli of continuity over wide classes of functions exploiting some of their convexity properties. To our knowledge it is the first time the entire calculus of moduli of smoothness has been included in a book. We then present numerous applications of Approximation Theory, giving exact val ues of errors in explicit forms. The K-functional method is systematically avoided since it produces nonexplicit constants. All other related books so far have allocated very little space to the computational aspect of moduli of smoothness. In Part II, we study/examine the Global Smoothness Preservation Prop erty (GSPP) for almost all known linear approximation operators of ap proximation theory including: trigonometric operators and algebraic in terpolation operators of Lagrange, Hermite-Fejer and Shepard type, also operators of stochastic type, convolution type, wavelet type integral opera tors and singular integral operators, etc. We present also a sufficient general theory for GSPP to hold true. We provide a great variety of applications of GSPP to Approximation Theory and many other fields of mathemat ics such as Functional analysis, and outside of mathematics, fields such as computer-aided geometric design (CAGD). Most of the time GSPP meth ods are optimal. Various moduli of smoothness are intensively involved in Part II. Therefore, methods from Part I can be used to calculate exactly the error of global smoothness preservation. It is the first time in the literature that a book has studied GSPP.

Approximation Theory and Harmonic Analysis on Spheres and Balls

Approximation Theory and Harmonic Analysis on Spheres and Balls
Title Approximation Theory and Harmonic Analysis on Spheres and Balls PDF eBook
Author Feng Dai
Publisher Springer Science & Business Media
Pages 447
Release 2013-04-17
Genre Mathematics
ISBN 1461466601

Download Approximation Theory and Harmonic Analysis on Spheres and Balls Book in PDF, Epub and Kindle

This monograph records progress in approximation theory and harmonic analysis on balls and spheres, and presents contemporary material that will be useful to analysts in this area. While the first part of the book contains mainstream material on the subject, the second and the third parts deal with more specialized topics, such as analysis in weight spaces with reflection invariant weight functions, and analysis on balls and simplexes. The last part of the book features several applications, including cubature formulas, distribution of points on the sphere, and the reconstruction algorithm in computerized tomography. This book is directed at researchers and advanced graduate students in analysis. Mathematicians who are familiar with Fourier analysis and harmonic analysis will understand many of the concepts that appear in this manuscript: spherical harmonics, the Hardy-Littlewood maximal function, the Marcinkiewicz multiplier theorem, the Riesz transform, and doubling weights are all familiar tools to researchers in this area.