Approximation Methods for Navier-Stokes Problems
Title | Approximation Methods for Navier-Stokes Problems PDF eBook |
Author | R. Rautmann |
Publisher | Springer |
Pages | 602 |
Release | 2006-11-15 |
Genre | Mathematics |
ISBN | 3540385509 |
Finite Element Methods for Navier-Stokes Equations
Title | Finite Element Methods for Navier-Stokes Equations PDF eBook |
Author | Vivette Girault |
Publisher | Springer Science & Business Media |
Pages | 386 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 3642616232 |
The material covered by this book has been taught by one of the authors in a post-graduate course on Numerical Analysis at the University Pierre et Marie Curie of Paris. It is an extended version of a previous text (cf. Girault & Raviart [32J) published in 1979 by Springer-Verlag in its series: Lecture Notes in Mathematics. In the last decade, many engineers and mathematicians have concentrated their efforts on the finite element solution of the Navier-Stokes equations for incompressible flows. The purpose of this book is to provide a fairly comprehen sive treatment of the most recent developments in that field. To stay within reasonable bounds, we have restricted ourselves to the case of stationary prob lems although the time-dependent problems are of fundamental importance. This topic is currently evolving rapidly and we feel that it deserves to be covered by another specialized monograph. We have tried, to the best of our ability, to present a fairly exhaustive treatment of the finite element methods for inner flows. On the other hand however, we have entirely left out the subject of exterior problems which involve radically different techniques, both from a theoretical and from a practical point of view. Also, we have neither discussed the implemen tation of the finite element methods presented by this book, nor given any explicit numerical result. This field is extensively covered by Peyret & Taylor [64J and Thomasset [82].
Implementation of Finite Element Methods for Navier-Stokes Equations
Title | Implementation of Finite Element Methods for Navier-Stokes Equations PDF eBook |
Author | F. Thomasset |
Publisher | Springer Science & Business Media |
Pages | 168 |
Release | 2012-12-06 |
Genre | Science |
ISBN | 3642870473 |
In structure mechanics analysis, finite element methods are now well estab lished and well documented techniques; their advantage lies in a higher flexibility, in particular for: (i) The representation of arbitrary complicated boundaries; (ii) Systematic rules for the developments of stable numerical schemes ap proximating mathematically wellposed problems, with various types of boundary conditions. On the other hand, compared to finite difference methods, this flexibility is paid by: an increased programming complexity; additional storage require ment. The application of finite element methods to fluid mechanics has been lagging behind and is relatively recent for several types of reasons: (i) Historical reasons: the early methods were invented by engineers for the analysis of torsion, flexion deformation of bearns, plates, shells, etc ... (see the historics in Strang and Fix (1972) or Zienckiewicz (1977». (ii) Technical reasons: fluid flow problems present specific difficulties: strong gradients,l of the velocity or temperature for instance, may occur which a finite mesh is unable to properly represent; a remedy lies in the various upwind finite element schemes which recently turned up, and which are reviewed in chapter 2 (yet their effect is just as controversial as in finite differences). Next, waves can propagate (e.g. in ocean dynamics with shallowwaters equations) which will be falsely distorted by a finite non regular mesh, as Kreiss (1979) pointed out. We are concerned in this course with the approximation of incompressible, viscous, Newtonian fluids, i.e. governed by N avier Stokes equations.
Navier-Stokes Equations
Title | Navier-Stokes Equations PDF eBook |
Author | Roger Temam |
Publisher | American Mathematical Soc. |
Pages | 426 |
Release | 2001-04-10 |
Genre | Mathematics |
ISBN | 0821827375 |
Originally published in 1977, the book is devoted to the theory and numerical analysis of the Navier-Stokes equations for viscous incompressible fluid. On the theoretical side, results related to the existence, the uniqueness, and, in some cases, the regularity of solutions are presented. On the numerical side, various approaches to the approximation of Navier-Stokes problems by discretization are considered, such as the finite dereference method, the finite element method, and the fractional steps method. The problems of stability and convergence for numerical methods are treated as completely as possible. The new material in the present book (as compared to the preceding 1984 edition) is an appendix reproducing a survey article written in 1998. This appendix touches upon a few aspects not addressed in the earlier editions, in particular a short derivation of the Navier-Stokes equations from the basic conservation principles in continuum mechanics, further historical perspectives, and indications on new developments in the area. The appendix also surveys some aspects of the related Euler equations and the compressible Navier-Stokes equations. The book is written in the style of a textbook and the author has attempted to make the treatment self-contained. It can be used as a textbook or a reference book for researchers. Prerequisites for reading the book include some familiarity with the Navier-Stokes equations and some knowledge of functional analysis and Sololev spaces.
High-Order Methods for Incompressible Fluid Flow
Title | High-Order Methods for Incompressible Fluid Flow PDF eBook |
Author | M. O. Deville |
Publisher | Cambridge University Press |
Pages | 532 |
Release | 2002-08-15 |
Genre | Mathematics |
ISBN | 9780521453097 |
Publisher Description
Approximation Methods for Navier-Stokes Problems
Title | Approximation Methods for Navier-Stokes Problems PDF eBook |
Author | |
Publisher | |
Pages | |
Release | 1980 |
Genre | |
ISBN |
Navier-stokes Equations In Planar Domains
Title | Navier-stokes Equations In Planar Domains PDF eBook |
Author | Matania Ben-artzi |
Publisher | World Scientific |
Pages | 315 |
Release | 2013-03-07 |
Genre | Mathematics |
ISBN | 1783263016 |
This volume deals with the classical Navier-Stokes system of equations governing the planar flow of incompressible, viscid fluid. It is a first-of-its-kind book, devoted to all aspects of the study of such flows, ranging from theoretical to numerical, including detailed accounts of classical test problems such as “driven cavity” and “double-driven cavity”.A comprehensive treatment of the mathematical theory developed in the last 15 years is elaborated, heretofore never presented in other books. It gives a detailed account of the modern compact schemes based on a “pure streamfunction” approach. In particular, a complete proof of convergence is given for the full nonlinear problem.This volume aims to present a variety of numerical test problems. It is therefore well positioned as a reference for both theoretical and applied mathematicians, as well as a text that can be used by graduate students pursuing studies in (pure or applied) mathematics, fluid dynamics and mathematical physics./a