An Introduction to the Approximation of Functions
Title | An Introduction to the Approximation of Functions PDF eBook |
Author | Theodore J. Rivlin |
Publisher | Courier Corporation |
Pages | 164 |
Release | 1981-01-01 |
Genre | Mathematics |
ISBN | 9780486640693 |
Mathematics of Computing -- Numerical Analysis.
The Design of Approximation Algorithms
Title | The Design of Approximation Algorithms PDF eBook |
Author | David P. Williamson |
Publisher | Cambridge University Press |
Pages | 518 |
Release | 2011-04-26 |
Genre | Computers |
ISBN | 9780521195270 |
Discrete optimization problems are everywhere, from traditional operations research planning problems, such as scheduling, facility location, and network design; to computer science problems in databases; to advertising issues in viral marketing. Yet most such problems are NP-hard. Thus unless P = NP, there are no efficient algorithms to find optimal solutions to such problems. This book shows how to design approximation algorithms: efficient algorithms that find provably near-optimal solutions. The book is organized around central algorithmic techniques for designing approximation algorithms, including greedy and local search algorithms, dynamic programming, linear and semidefinite programming, and randomization. Each chapter in the first part of the book is devoted to a single algorithmic technique, which is then applied to several different problems. The second part revisits the techniques but offers more sophisticated treatments of them. The book also covers methods for proving that optimization problems are hard to approximate. Designed as a textbook for graduate-level algorithms courses, the book will also serve as a reference for researchers interested in the heuristic solution of discrete optimization problems.
Interpolation and Approximation
Title | Interpolation and Approximation PDF eBook |
Author | Philip J. Davis |
Publisher | Courier Corporation |
Pages | 418 |
Release | 1975-01-01 |
Genre | Mathematics |
ISBN | 0486624951 |
Intermediate-level survey covers remainder theory, convergence theorems, and uniform and best approximation. Other topics include least square approximation, Hilbert space, orthogonal polynomials, theory of closure and completeness, and more. 1963 edition.
Interpolation and Approximation by Polynomials
Title | Interpolation and Approximation by Polynomials PDF eBook |
Author | George M. Phillips |
Publisher | Springer Science & Business Media |
Pages | 325 |
Release | 2006-04-06 |
Genre | Mathematics |
ISBN | 0387216820 |
In addition to coverage of univariate interpolation and approximation, the text includes material on multivariate interpolation and multivariate numerical integration, a generalization of the Bernstein polynomials that has not previously appeared in book form, and a greater coverage of Peano kernel theory than is found in most textbooks. There are many worked examples and each section ends with a number of carefully selected problems that extend the student's understanding of the text. The author is well known for his clarity of writing and his many contributions as a researcher in approximation theory.
Mathematics of Approximation
Title | Mathematics of Approximation PDF eBook |
Author | Johan De Villiers |
Publisher | Springer Science & Business Media |
Pages | 418 |
Release | 2012-06-30 |
Genre | Mathematics |
ISBN | 9491216503 |
The approximation of a continuous function by either an algebraic polynomial, a trigonometric polynomial, or a spline, is an important issue in application areas like computer-aided geometric design and signal analysis. This book is an introduction to the mathematical analysis of such approximation, and, with the prerequisites of only calculus and linear algebra, the material is targeted at senior undergraduate level, with a treatment that is both rigorous and self-contained. The topics include polynomial interpolation; Bernstein polynomials and the Weierstrass theorem; best approximations in the general setting of normed linear spaces and inner product spaces; best uniform polynomial approximation; orthogonal polynomials; Newton-Cotes , Gauss and Clenshaw-Curtis quadrature; the Euler-Maclaurin formula ; approximation of periodic functions; the uniform convergence of Fourier series; spline approximation,with an extensive treatment of local spline interpolation,and its application in quadrature. Exercises are provided at the end of each chapter
Approximation of Elliptic Boundary-Value Problems
Title | Approximation of Elliptic Boundary-Value Problems PDF eBook |
Author | Jean-Pierre Aubin |
Publisher | Courier Corporation |
Pages | 386 |
Release | 2007-01-01 |
Genre | Mathematics |
ISBN | 0486457915 |
A marriage of the finite-differences method with variational methods for solving boundary-value problems, the finite-element method is superior in many ways to finite-differences alone. This self-contained text for advanced undergraduates and graduate students is intended to imbed this combination of methods into the framework of functional analysis and to explain its applications to approximation of nonhomogeneous boundary-value problems for elliptic operators. The treatment begins with a summary of the main results established in the book. Chapter 1 introduces the variational method and the finite-difference method in the simple case of second-order differential equations. Chapters 2 and 3 concern abstract approximations of Hilbert spaces and linear operators, and Chapters 4 and 5 study finite-element approximations of Sobolev spaces. The remaining four chapters consider several methods for approximating nonhomogeneous boundary-value problems for elliptic operators.
Numerical Approximation Methods
Title | Numerical Approximation Methods PDF eBook |
Author | Harold Cohen |
Publisher | Springer Science & Business Media |
Pages | 493 |
Release | 2011-09-28 |
Genre | Mathematics |
ISBN | 1441998365 |
This book presents numerical and other approximation techniques for solving various types of mathematical problems that cannot be solved analytically. In addition to well known methods, it contains some non-standard approximation techniques that are now formally collected as well as original methods developed by the author that do not appear in the literature. This book contains an extensive treatment of approximate solutions to various types of integral equations, a topic that is not often discussed in detail. There are detailed analyses of ordinary and partial differential equations and descriptions of methods for estimating the values of integrals that are presented in a level of detail that will suggest techniques that will be useful for developing methods for approximating solutions to problems outside of this text. The book is intended for researchers who must approximate solutions to problems that cannot be solved analytically. It is also appropriate for students taking courses in numerical approximation techniques.