Applied Statistics in Agricultural, Biological, and Environmental Sciences
Title | Applied Statistics in Agricultural, Biological, and Environmental Sciences PDF eBook |
Author | Barry Glaz |
Publisher | John Wiley & Sons |
Pages | 672 |
Release | 2020-01-22 |
Genre | Technology & Engineering |
ISBN | 0891183590 |
Better experimental design and statistical analysis make for more robust science. A thorough understanding of modern statistical methods can mean the difference between discovering and missing crucial results and conclusions in your research, and can shape the course of your entire research career. With Applied Statistics, Barry Glaz and Kathleen M. Yeater have worked with a team of expert authors to create a comprehensive text for graduate students and practicing scientists in the agricultural, biological, and environmental sciences. The contributors cover fundamental concepts and methodologies of experimental design and analysis, and also delve into advanced statistical topics, all explored by analyzing real agronomic data with practical and creative approaches using available software tools. IN PRESS! This book is being published according to the “Just Published” model, with more chapters to be published online as they are completed.
Applied Statistics and DOE
Title | Applied Statistics and DOE PDF eBook |
Author | Mehmet Ali Arslan |
Publisher | |
Pages | |
Release | 2021-07-05 |
Genre | |
ISBN | 9780999200513 |
The first edition of Applied Statistics and DOE is truly an exceptional book, emphasizing coverage on the main subjects of statistics with hands-on application content including; collection/presentation of data, descriptive/inferential statistics in analyzing the data, input/output causal transfer function building with regression analysis, statistical process control(SPC) through control charts and process capability analysis. Further, the textbook gives an excellent insight about Design of Experiments(DOE) and introduces OFAT, factorial and Taguchi designs in comparative detail. The textbook is specially written for the use of all levels of students from different backgrounds and also designed to equip them with every day use of hands-on knowledge and experience in handling numerous statistical and DOE problems.
Applied Statistics: From Bivariate Through Multivariate Techniques
Title | Applied Statistics: From Bivariate Through Multivariate Techniques PDF eBook |
Author | Rebecca M. Warner |
Publisher | SAGE |
Pages | 1209 |
Release | 2013 |
Genre | Mathematics |
ISBN | 141299134X |
Rebecca M. Warner's Applied Statistics: From Bivariate Through Multivariate Techniques, Second Edition provides a clear introduction to widely used topics in bivariate and multivariate statistics, including multiple regression, discriminant analysis, MANOVA, factor analysis, and binary logistic regression. The approach is applied and does not require formal mathematics; equations are accompanied by verbal explanations. Students are asked to think about the meaning of equations. Each chapter presents a complete empirical research example to illustrate the application of a specific method. Although SPSS examples are used throughout the book, the conceptual material will be helpful for users of different programs. Each chapter has a glossary and comprehension questions.
Applied Statistics
Title | Applied Statistics PDF eBook |
Author | Dieter Rasch |
Publisher | John Wiley & Sons |
Pages | 719 |
Release | 2019-08-14 |
Genre | Mathematics |
ISBN | 1119551544 |
Instructs readers on how to use methods of statistics and experimental design with R software Applied statistics covers both the theory and the application of modern statistical and mathematical modelling techniques to applied problems in industry, public services, commerce, and research. It proceeds from a strong theoretical background, but it is practically oriented to develop one's ability to tackle new and non-standard problems confidently. Taking a practical approach to applied statistics, this user-friendly guide teaches readers how to use methods of statistics and experimental design without going deep into the theory. Applied Statistics: Theory and Problem Solutions with R includes chapters that cover R package sampling procedures, analysis of variance, point estimation, and more. It follows on the heels of Rasch and Schott's Mathematical Statistics via that book's theoretical background—taking the lessons learned from there to another level with this book’s addition of instructions on how to employ the methods using R. But there are two important chapters not mentioned in the theoretical back ground as Generalised Linear Models and Spatial Statistics. Offers a practical over theoretical approach to the subject of applied statistics Provides a pre-experimental as well as post-experimental approach to applied statistics Features classroom tested material Applicable to a wide range of people working in experimental design and all empirical sciences Includes 300 different procedures with R and examples with R-programs for the analysis and for determining minimal experimental sizes Applied Statistics: Theory and Problem Solutions with R will appeal to experimenters, statisticians, mathematicians, and all scientists using statistical procedures in the natural sciences, medicine, and psychology amongst others.
Modern Applied Statistics with S-Plus
Title | Modern Applied Statistics with S-Plus PDF eBook |
Author | W. N. Venables |
Publisher | |
Pages | 516 |
Release | 2014-01-15 |
Genre | |
ISBN | 9781475731224 |
Learn R for Applied Statistics
Title | Learn R for Applied Statistics PDF eBook |
Author | Eric Goh Ming Hui |
Publisher | Apress |
Pages | 254 |
Release | 2018-11-30 |
Genre | Computers |
ISBN | 1484242009 |
Gain the R programming language fundamentals for doing the applied statistics useful for data exploration and analysis in data science and data mining. This book covers topics ranging from R syntax basics, descriptive statistics, and data visualizations to inferential statistics and regressions. After learning R’s syntax, you will work through data visualizations such as histograms and boxplot charting, descriptive statistics, and inferential statistics such as t-test, chi-square test, ANOVA, non-parametric test, and linear regressions. Learn R for Applied Statistics is a timely skills-migration book that equips you with the R programming fundamentals and introduces you to applied statistics for data explorations. What You Will LearnDiscover R, statistics, data science, data mining, and big data Master the fundamentals of R programming, including variables and arithmetic, vectors, lists, data frames, conditional statements, loops, and functions Work with descriptive statistics Create data visualizations, including bar charts, line charts, scatter plots, boxplots, histograms, and scatterplots Use inferential statistics including t-tests, chi-square tests, ANOVA, non-parametric tests, linear regressions, and multiple linear regressions Who This Book Is For Those who are interested in data science, in particular data exploration using applied statistics, and the use of R programming for data visualizations.
Principles of Applied Statistics
Title | Principles of Applied Statistics PDF eBook |
Author | D. R. Cox |
Publisher | Cambridge University Press |
Pages | 213 |
Release | 2011-07-28 |
Genre | Mathematics |
ISBN | 1139503545 |
Applied statistics is more than data analysis, but it is easy to lose sight of the big picture. David Cox and Christl Donnelly distil decades of scientific experience into usable principles for the successful application of statistics, showing how good statistical strategy shapes every stage of an investigation. As you advance from research or policy question, to study design, through modelling and interpretation, and finally to meaningful conclusions, this book will be a valuable guide. Over a hundred illustrations from a wide variety of real applications make the conceptual points concrete, illuminating your path and deepening your understanding. This book is essential reading for anyone who makes extensive use of statistical methods in their work.