Applied Shape Optimization for Fluids

Applied Shape Optimization for Fluids
Title Applied Shape Optimization for Fluids PDF eBook
Author Bijan Mohammadi
Publisher Oxford University Press
Pages 292
Release 2010
Genre Mathematics
ISBN 0199546908

Download Applied Shape Optimization for Fluids Book in PDF, Epub and Kindle

Contents: PREFACE; ACKNOWLEDGEMENTS; 1. Introduction; 2. Optimal shape design; 3. Partial differential equations for fluids; 4. Some numerical methods for fluids; 5. Sensitivity evaluation and automatic differentiation; 6. Parameterization and implementation issues; 7. Local and global optimization; 8. Incomplete sensitivities; 9. Consistent approximations and approximate gradients; 10. Numerical results on shape optimization; 11. Control of unsteady flows; 12. From airplane design to microfluidic; 13. Toplogical optimization for fluids; 14. Conclusion and perspectives; INDEX.

Applied Shape Optimization for Fluids

Applied Shape Optimization for Fluids
Title Applied Shape Optimization for Fluids PDF eBook
Author B. Mohammadi
Publisher Oxford University Press
Pages 251
Release 2001
Genre Mathematics
ISBN 9780198507437

Download Applied Shape Optimization for Fluids Book in PDF, Epub and Kindle

The fields of computational fluid dynamics (CFD) and optimal shape design (OSD) have received considerable attention in the recent past, and are of practical importance for many engineering applications. The present book deals with shape optimization problems for fluids, with the equations needed for their understanding (Euler and Navier Stokes), and with the numerical simulation of these problems. Automatic differentiation, approximate gradients, and automatic mesh refinement as the new tools of optimal shape design are introduced, and their implementation into the industrial environments of aerospace and automobile equipment industry explained and illustrated.

Design Optimization of Fluid Machinery

Design Optimization of Fluid Machinery
Title Design Optimization of Fluid Machinery PDF eBook
Author Kwang-Yong Kim
Publisher John Wiley & Sons
Pages 406
Release 2019-01-14
Genre Science
ISBN 111918830X

Download Design Optimization of Fluid Machinery Book in PDF, Epub and Kindle

Dieses aktuelle Referenzwerk behandelt numerische Optimierungsmethoden für Strömungsmaschinen und die wichtigsten industriellen Anwendungen. Grundlagen sind umfangreiche Forschung und Erfahrung der Autoren. Die logischen Zusammenhänge, um den Bereich der numerischen Strömungssimulation (CFD) zu verstehen, werden anhand der Grundlagen der Strömungsmechanik, von Strömungsmaschinen und ihrer Komponenten erläutert. Im Anschluss folgt eine Einführung in Methoden der Ein- und Mehrzieloptimierung, die automatische Optimierung, in Ersatzmodelle und Entwicklungsalgorithmen. Das Fachbuch schließt mit der ausführlichen Erklärung von Designansätzen und Anwendungen für Pumpen, Turbinen, Kompressoren und weiteren Systemen von Strömungsmaschinen. Der Nachdruck liegt hier bei Systemen für erneuerbare Energien. - Die Autoren sind führende Experten des Fachgebiets. - Ein handliches Fachbuch zu Optimierungsmethoden mittels numerischer Strömungssimulation bei Strömungsmaschinen. - Beschreibt wichtige Anwendungsbereiche in der Industrie und enthält Kapitel zu Systemen für erneuerbaren Energien. Design Optimization of Fluid Machinery ist ein wichtiger Leitfaden für Graduierte, Forscher und Ingenieure aus den Bereichen Strömungsmaschinen und zugehörige Optimierungsmethoden. Als Fachbuch mit allem Wissenswerten zu dem Thema richtet es sich an Studenten höherer Semester der Fachrichtungen Maschinenbau und verwandter Bereiche der Strömungssimulation und Luft-/Raumfahrttechnik.

Optimization and Computational Fluid Dynamics

Optimization and Computational Fluid Dynamics
Title Optimization and Computational Fluid Dynamics PDF eBook
Author Dominique Thévenin
Publisher Springer Science & Business Media
Pages 301
Release 2008-01-08
Genre Technology & Engineering
ISBN 3540721533

Download Optimization and Computational Fluid Dynamics Book in PDF, Epub and Kindle

The numerical optimization of practical applications has been an issue of major importance for the last 10 years. It allows us to explore reliable non-trivial configurations, differing widely from all known solutions. The purpose of this book is to introduce the state-of-the-art concerning this issue and many complementary applications are presented.

Introduction to Shape Optimization

Introduction to Shape Optimization
Title Introduction to Shape Optimization PDF eBook
Author J. Haslinger
Publisher SIAM
Pages 291
Release 2003-01-01
Genre Mathematics
ISBN 9780898718690

Download Introduction to Shape Optimization Book in PDF, Epub and Kindle

The efficiency and reliability of manufactured products depend on, among other things, geometrical aspects; it is therefore not surprising that optimal shape design problems have attracted the interest of applied mathematicians and engineers. This self-contained, elementary introduction to the mathematical and computational aspects of sizing and shape optimization enables readers to gain a firm understanding of the theoretical and practical aspects so they may confidently enter this field. Introduction to Shape Optimization: Theory, Approximation, and Computation treats sizing and shape optimization comprehensively, covering everything from mathematical theory (existence analysis, discretizations, and convergence analysis for discretized problems) through computational aspects (sensitivity analysis, numerical minimization methods) to industrial applications. Applications include contact stress minimization for elasto-plastic bodies, multidisciplinary optimization of an airfoil, and shape optimization of a dividing tube. By presenting sizing and shape optimization in an abstract way, the authors are able to use a unified approach in the mathematical analysis for a large class of optimization problems in various fields of physics. Audience: the book is written primarily for students of applied mathematics, scientific computing, and mechanics. Most of the material is directed toward graduate students, although a portion of it is suitable for senior undergraduate students. Readers are assumed to have some knowledge of partial differential equations and their numerical solution, as well as modern programming language such as C++ Fortran 90.

Three-dimensional Shape Optimization of Internal Fluid Flow Systems Using Arbitrary Shape Deformation Coupled with Computational Fluid Dynamics

Three-dimensional Shape Optimization of Internal Fluid Flow Systems Using Arbitrary Shape Deformation Coupled with Computational Fluid Dynamics
Title Three-dimensional Shape Optimization of Internal Fluid Flow Systems Using Arbitrary Shape Deformation Coupled with Computational Fluid Dynamics PDF eBook
Author Ernest C. Perry
Publisher
Pages 142
Release 1999
Genre Fluid dynamics
ISBN 9780599457904

Download Three-dimensional Shape Optimization of Internal Fluid Flow Systems Using Arbitrary Shape Deformation Coupled with Computational Fluid Dynamics Book in PDF, Epub and Kindle

Shape Optimization Problems

Shape Optimization Problems
Title Shape Optimization Problems PDF eBook
Author Hideyuki Azegami
Publisher Springer Nature
Pages 646
Release 2020-09-30
Genre Mathematics
ISBN 9811576181

Download Shape Optimization Problems Book in PDF, Epub and Kindle

This book provides theories on non-parametric shape optimization problems, systematically keeping in mind readers with an engineering background. Non-parametric shape optimization problems are defined as problems of finding the shapes of domains in which boundary value problems of partial differential equations are defined. In these problems, optimum shapes are obtained from an arbitrary form without any geometrical parameters previously assigned. In particular, problems in which the optimum shape is sought by making a hole in domain are called topology optimization problems. Moreover, a problem in which the optimum shape is obtained based on domain variation is referred to as a shape optimization problem of domain variation type, or a shape optimization problem in a limited sense. Software has been developed to solve these problems, and it is being used to seek practical optimum shapes. However, there are no books explaining such theories beginning with their foundations. The structure of the book is shown in the Preface. The theorems are built up using mathematical results. Therefore, a mathematical style is introduced, consisting of definitions and theorems to summarize the key points. This method of expression is advanced as provable facts are clearly shown. If something to be investigated is contained in the framework of mathematics, setting up a theory using theorems prepared by great mathematicians is thought to be an extremely effective approach. However, mathematics attempts to heighten the level of abstraction in order to understand many things in a unified fashion. This characteristic may baffle readers with an engineering background. Hence in this book, an attempt has been made to provide explanations in engineering terms, with examples from mechanics, after accurately denoting the provable facts using definitions and theorems.