Applied Computational Genomics
Title | Applied Computational Genomics PDF eBook |
Author | Yin Yao Shugart |
Publisher | Springer Science & Business Media |
Pages | 197 |
Release | 2012-12-30 |
Genre | Medical |
ISBN | 9400755589 |
"Applied Computational Genomics" focuses on an in-depth review of statistical development and application in the area of human genomics including candidate gene mapping, linkage analysis, population-based, genome-wide association, exon sequencing and whole genome sequencing analysis. The authors are extremely experienced in the area of statistical genomics and will give a detailed introduction of the evolution in the field and critical evaluations of the advantages and disadvantages of the statistical models proposed. They will also share their views on a future shift toward translational biology. The book will be of value to human geneticists, medical doctors, health educators, policy makers, and graduate students majoring in biology, biostatistics, and bioinformatics. Dr. Yin Yao Shugart is investigator in the Intramural Research Program at the National Institute of Mental Health, Bethesda, Maryland USA.
Applied Computational Genomics
Title | Applied Computational Genomics PDF eBook |
Author | Yin Yao |
Publisher | Springer |
Pages | 154 |
Release | 2018-09-03 |
Genre | Medical |
ISBN | 9811310718 |
The volume provides a review of statistical development and application in the area of human genomics, including candidate gene mapping, linkage analysis, population-based genome-wide association, exon sequencing, and whole genome sequencing analysis. The authors are extremely experienced in the field of statistical genomics and will give a detailed introduction to the evolution of the field, as well as critical comments on the advantages and disadvantages of the proposed statistical models. The future directions of translational biology will also be described.
Computational Genome Analysis
Title | Computational Genome Analysis PDF eBook |
Author | Richard C. Deonier |
Publisher | Springer Science & Business Media |
Pages | 543 |
Release | 2005-12-27 |
Genre | Computers |
ISBN | 0387288074 |
This book presents the foundations of key problems in computational molecular biology and bioinformatics. It focuses on computational and statistical principles applied to genomes, and introduces the mathematics and statistics that are crucial for understanding these applications. The book features a free download of the R software statistics package and the text provides great crossover material that is interesting and accessible to students in biology, mathematics, statistics and computer science. More than 100 illustrations and diagrams reinforce concepts and present key results from the primary literature. Exercises are given at the end of chapters.
Introduction to Computational Genomics
Title | Introduction to Computational Genomics PDF eBook |
Author | Nello Cristianini |
Publisher | Cambridge University Press |
Pages | 200 |
Release | 2006-12-14 |
Genre | Computers |
ISBN | 9780521856034 |
Where did SARS come from? Have we inherited genes from Neanderthals? How do plants use their internal clock? The genomic revolution in biology enables us to answer such questions. But the revolution would have been impossible without the support of powerful computational and statistical methods that enable us to exploit genomic data. Many universities are introducing courses to train the next generation of bioinformaticians: biologists fluent in mathematics and computer science, and data analysts familiar with biology. This readable and entertaining book, based on successful taught courses, provides a roadmap to navigate entry to this field. It guides the reader through key achievements of bioinformatics, using a hands-on approach. Statistical sequence analysis, sequence alignment, hidden Markov models, gene and motif finding and more, are introduced in a rigorous yet accessible way. A companion website provides the reader with Matlab-related software tools for reproducing the steps demonstrated in the book.
Genomic Signal Processing
Title | Genomic Signal Processing PDF eBook |
Author | Ilya Shmulevich |
Publisher | Princeton University Press |
Pages | 314 |
Release | 2014-09-08 |
Genre | Science |
ISBN | 1400865263 |
Genomic signal processing (GSP) can be defined as the analysis, processing, and use of genomic signals to gain biological knowledge, and the translation of that knowledge into systems-based applications that can be used to diagnose and treat genetic diseases. Situated at the crossroads of engineering, biology, mathematics, statistics, and computer science, GSP requires the development of both nonlinear dynamical models that adequately represent genomic regulation, and diagnostic and therapeutic tools based on these models. This book facilitates these developments by providing rigorous mathematical definitions and propositions for the main elements of GSP and by paying attention to the validity of models relative to the data. Ilya Shmulevich and Edward Dougherty cover real-world situations and explain their mathematical modeling in relation to systems biology and systems medicine. Genomic Signal Processing makes a major contribution to computational biology, systems biology, and translational genomics by providing a self-contained explanation of the fundamental mathematical issues facing researchers in four areas: classification, clustering, network modeling, and network intervention.
Ethics, Computing, and Genomics
Title | Ethics, Computing, and Genomics PDF eBook |
Author | Herman T. Tavani |
Publisher | Jones & Bartlett Learning |
Pages | 382 |
Release | 2006 |
Genre | Business & Economics |
ISBN | 9780763736200 |
Comprised of eighteen chapters contributed by experts in the fields of biology, computer science, information technology, law, and philosophy, Ethics, Computing, and Genomics provides instructors with a flexible resource for undergraduate and graduate courses in an exciting new field of applied ethics: computational genomics. The chapters are organized in a way that takes the reader from a discussion of conceptual frameworks and methodological perspectives, including ethical theory, to an in-depth analysis of controversial issues involving privacy and confidentiality, information consent, and intellectual property. The volume concludes with some predictions about the future of computational genomics, including the role that nanotechnology will likely play as biotechnologies and information technologies continue to converge.
Emerging Trends in Computational Biology, Bioinformatics, and Systems Biology
Title | Emerging Trends in Computational Biology, Bioinformatics, and Systems Biology PDF eBook |
Author | Hamid R Arabnia |
Publisher | Morgan Kaufmann |
Pages | 670 |
Release | 2015-08-11 |
Genre | Computers |
ISBN | 0128026464 |
Emerging Trends in Computational Biology, Bioinformatics, and Systems Biology discusses the latest developments in all aspects of computational biology, bioinformatics, and systems biology and the application of data-analytics and algorithms, mathematical modeling, and simu- lation techniques. • Discusses the development and application of data-analytical and theoretical methods, mathematical modeling, and computational simulation techniques to the study of biological and behavioral systems, including applications in cancer research, computational intelligence and drug design, high-performance computing, and biology, as well as cloud and grid computing for the storage and access of big data sets. • Presents a systematic approach for storing, retrieving, organizing, and analyzing biological data using software tools with applications to general principles of DNA/RNA structure, bioinformatics and applications, genomes, protein structure, and modeling and classification, as well as microarray analysis. • Provides a systems biology perspective, including general guidelines and techniques for obtaining, integrating, and analyzing complex data sets from multiple experimental sources using computational tools and software. Topics covered include phenomics, genomics, epigenomics/epigenetics, metabolomics, cell cycle and checkpoint control, and systems biology and vaccination research. • Explains how to effectively harness the power of Big Data tools when data sets are so large and complex that it is difficult to process them using conventional database management systems or traditional data processing applications. - Discusses the development and application of data-analytical and theoretical methods, mathematical modeling and computational simulation techniques to the study of biological and behavioral systems. - Presents a systematic approach for storing, retrieving, organizing and analyzing biological data using software tools with applications. - Provides a systems biology perspective including general guidelines and techniques for obtaining, integrating and analyzing complex data sets from multiple experimental sources using computational tools and software.