Applied Cloud Deep Semantic Recognition
Title | Applied Cloud Deep Semantic Recognition PDF eBook |
Author | Mehdi Roopaei |
Publisher | CRC Press |
Pages | 188 |
Release | 2018-04-09 |
Genre | Computers |
ISBN | 135111901X |
This book provides a comprehensive overview of the research on anomaly detection with respect to context and situational awareness that aim to get a better understanding of how context information influences anomaly detection. In each chapter, it identifies advanced anomaly detection and key assumptions, which are used by the model to differentiate between normal and anomalous behavior. When applying a given model to a particular application, the assumptions can be used as guidelines to assess the effectiveness of the model in that domain. Each chapter provides an advanced deep content understanding and anomaly detection algorithm, and then shows how the proposed approach is deviating of the basic techniques. Further, for each chapter, it describes the advantages and disadvantages of the algorithm. The final chapters provide a discussion on the computational complexity of the models and graph computational frameworks such as Google Tensorflow and H2O because it is an important issue in real application domains. This book provides a better understanding of the different directions in which research has been done on deep semantic analysis and situational assessment using deep learning for anomalous detection, and how methods developed in one area can be applied in applications in other domains. This book seeks to provide both cyber analytics practitioners and researchers an up-to-date and advanced knowledge in cloud based frameworks for deep semantic analysis and advanced anomaly detection using cognitive and artificial intelligence (AI) models.
Monetizing Machine Learning
Title | Monetizing Machine Learning PDF eBook |
Author | Manuel Amunategui |
Publisher | Apress |
Pages | 510 |
Release | 2018-09-12 |
Genre | Computers |
ISBN | 1484238737 |
Take your Python machine learning ideas and create serverless web applications accessible by anyone with an Internet connection. Some of the most popular serverless cloud providers are covered in this book—Amazon, Microsoft, Google, and PythonAnywhere. You will work through a series of common Python data science problems in an increasing order of complexity. The practical projects presented in this book are simple, clear, and can be used as templates to jump-start many other types of projects. You will learn to create a web application around numerical or categorical predictions, understand the analysis of text, create powerful and interactive presentations, serve restricted access to data, and leverage web plugins to accept credit card payments and donations. You will get your projects into the hands of the world in no time. Each chapter follows three steps: modeling the right way, designing and developing a local web application, and deploying onto a popular and reliable serverless cloud provider. You can easily jump to or skip particular topics in the book. You also will have access to Jupyter notebooks and code repositories for complete versions of the code covered in the book. What You’ll Learn Extend your machine learning models using simple techniques to create compelling and interactive web dashboards Leverage the Flask web framework for rapid prototyping of your Python models and ideasCreate dynamic content powered by regression coefficients, logistic regressions, gradient boosting machines, Bayesian classifications, and more Harness the power of TensorFlow by exporting saved models into web applications Create rich web dashboards to handle complex real-time user input with JavaScript and Ajax to yield interactive and tailored contentCreate dashboards with paywalls to offer subscription-based accessAccess API data such as Google Maps, OpenWeather, etc.Apply different approaches to make sense of text data and return customized intelligence Build an intuitive and useful recommendation site to add value to users and entice them to keep coming back Utilize the freemium offerings of Google Analytics and analyze the results Take your ideas all the way to your customer's plate using the top serverless cloud providers Who This Book Is For Those with some programming experience with Python, code editing, and access to an interpreter in working order. The book is geared toward entrepreneurs who want to get their ideas onto the web without breaking the bank, small companies without an IT staff, students wanting exposure and training, and for all data science professionals ready to take things to the next level.
Applied Cloud Deep Semantic Recognition
Title | Applied Cloud Deep Semantic Recognition PDF eBook |
Author | Mehdi Roopaei |
Publisher | CRC Press |
Pages | 236 |
Release | 2018-04-09 |
Genre | Computers |
ISBN | 1351119001 |
This book provides a comprehensive overview of the research on anomaly detection with respect to context and situational awareness that aim to get a better understanding of how context information influences anomaly detection. In each chapter, it identifies advanced anomaly detection and key assumptions, which are used by the model to differentiate between normal and anomalous behavior. When applying a given model to a particular application, the assumptions can be used as guidelines to assess the effectiveness of the model in that domain. Each chapter provides an advanced deep content understanding and anomaly detection algorithm, and then shows how the proposed approach is deviating of the basic techniques. Further, for each chapter, it describes the advantages and disadvantages of the algorithm. The final chapters provide a discussion on the computational complexity of the models and graph computational frameworks such as Google Tensorflow and H2O because it is an important issue in real application domains. This book provides a better understanding of the different directions in which research has been done on deep semantic analysis and situational assessment using deep learning for anomalous detection, and how methods developed in one area can be applied in applications in other domains. This book seeks to provide both cyber analytics practitioners and researchers an up-to-date and advanced knowledge in cloud based frameworks for deep semantic analysis and advanced anomaly detection using cognitive and artificial intelligence (AI) models.
Deep Learning through Sparse and Low-Rank Modeling
Title | Deep Learning through Sparse and Low-Rank Modeling PDF eBook |
Author | Zhangyang Wang |
Publisher | Academic Press |
Pages | 296 |
Release | 2019-04-12 |
Genre | Computers |
ISBN | 0128136596 |
Deep Learning through Sparse Representation and Low-Rank Modeling bridges classical sparse and low rank models-those that emphasize problem-specific Interpretability-with recent deep network models that have enabled a larger learning capacity and better utilization of Big Data. It shows how the toolkit of deep learning is closely tied with the sparse/low rank methods and algorithms, providing a rich variety of theoretical and analytic tools to guide the design and interpretation of deep learning models. The development of the theory and models is supported by a wide variety of applications in computer vision, machine learning, signal processing, and data mining. This book will be highly useful for researchers, graduate students and practitioners working in the fields of computer vision, machine learning, signal processing, optimization and statistics.
Computer Vision – ECCV 2018 Workshops
Title | Computer Vision – ECCV 2018 Workshops PDF eBook |
Author | Laura Leal-Taixé |
Publisher | Springer |
Pages | 763 |
Release | 2019-01-22 |
Genre | Computers |
ISBN | 3030110249 |
The six-volume set comprising the LNCS volumes 11129-11134 constitutes the refereed proceedings of the workshops that took place in conjunction with the 15th European Conference on Computer Vision, ECCV 2018, held in Munich, Germany, in September 2018.43 workshops from 74 workshops proposals were selected for inclusion in the proceedings. The workshop topics present a good orchestration of new trends and traditional issues, built bridges into neighboring fields, and discuss fundamental technologies and novel applications.
Intelligent Systems and Human Machine Collaboration
Title | Intelligent Systems and Human Machine Collaboration PDF eBook |
Author | Siddhartha Bhattacharyya |
Publisher | Springer Nature |
Pages | 280 |
Release | 2023-03-29 |
Genre | Computers |
ISBN | 9811984778 |
The book constitutes proceedings of the International Conference on Intelligent Systems and Human-Machine Collaboration 2022. The papers consist of research from different domains of human-machine interaction, computer engineering like quantum computational intelligence, big data analytics, the Internet of things, etc. The book includes significant contributions from academia and industry dealing with human-machine interaction both from the theoretical development and the application point of view. It also brings out research articles in interdisciplinary platforms applying human-machine interaction. The book is useful to researchers and practitioners alike.
Applied Deep Learning and Computer Vision for Self-Driving Cars
Title | Applied Deep Learning and Computer Vision for Self-Driving Cars PDF eBook |
Author | Sumit Ranjan |
Publisher | Packt Publishing Ltd |
Pages | 320 |
Release | 2020-08-14 |
Genre | Computers |
ISBN | 1838647023 |
Explore self-driving car technology using deep learning and artificial intelligence techniques and libraries such as TensorFlow, Keras, and OpenCV Key FeaturesBuild and train powerful neural network models to build an autonomous carImplement computer vision, deep learning, and AI techniques to create automotive algorithmsOvercome the challenges faced while automating different aspects of driving using modern Python libraries and architecturesBook Description Thanks to a number of recent breakthroughs, self-driving car technology is now an emerging subject in the field of artificial intelligence and has shifted data scientists' focus to building autonomous cars that will transform the automotive industry. This book is a comprehensive guide to use deep learning and computer vision techniques to develop autonomous cars. Starting with the basics of self-driving cars (SDCs), this book will take you through the deep neural network techniques required to get up and running with building your autonomous vehicle. Once you are comfortable with the basics, you'll delve into advanced computer vision techniques and learn how to use deep learning methods to perform a variety of computer vision tasks such as finding lane lines, improving image classification, and so on. You will explore the basic structure and working of a semantic segmentation model and get to grips with detecting cars using semantic segmentation. The book also covers advanced applications such as behavior-cloning and vehicle detection using OpenCV, transfer learning, and deep learning methodologies to train SDCs to mimic human driving. By the end of this book, you'll have learned how to implement a variety of neural networks to develop your own autonomous vehicle using modern Python libraries. What you will learnImplement deep neural network from scratch using the Keras libraryUnderstand the importance of deep learning in self-driving carsGet to grips with feature extraction techniques in image processing using the OpenCV libraryDesign a software pipeline that detects lane lines in videosImplement a convolutional neural network (CNN) image classifier for traffic signal signsTrain and test neural networks for behavioral-cloning by driving a car in a virtual simulatorDiscover various state-of-the-art semantic segmentation and object detection architecturesWho this book is for If you are a deep learning engineer, AI researcher, or anyone looking to implement deep learning and computer vision techniques to build self-driving blueprint solutions, this book is for you. Anyone who wants to learn how various automotive-related algorithms are built, will also find this book useful. Python programming experience, along with a basic understanding of deep learning, is necessary to get the most of this book.