Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives

Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives
Title Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives PDF eBook
Author Andrew Gelman
Publisher John Wiley & Sons
Pages 448
Release 2004-09-03
Genre Mathematics
ISBN 9780470090435

Download Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives Book in PDF, Epub and Kindle

This book brings together a collection of articles on statistical methods relating to missing data analysis, including multiple imputation, propensity scores, instrumental variables, and Bayesian inference. Covering new research topics and real-world examples which do not feature in many standard texts. The book is dedicated to Professor Don Rubin (Harvard). Don Rubin has made fundamental contributions to the study of missing data. Key features of the book include: Comprehensive coverage of an imporant area for both research and applications. Adopts a pragmatic approach to describing a wide range of intermediate and advanced statistical techniques. Covers key topics such as multiple imputation, propensity scores, instrumental variables and Bayesian inference. Includes a number of applications from the social and health sciences. Edited and authored by highly respected researchers in the area.

Applied Bayesian Modeling and Causal Inference from Incomplete-data Perspectives

Applied Bayesian Modeling and Causal Inference from Incomplete-data Perspectives
Title Applied Bayesian Modeling and Causal Inference from Incomplete-data Perspectives PDF eBook
Author Andrew Gelman
Publisher
Pages 0
Release 2004
Genre Bayesian statistical decision theory
ISBN

Download Applied Bayesian Modeling and Causal Inference from Incomplete-data Perspectives Book in PDF, Epub and Kindle

Missing Data in Longitudinal Studies

Missing Data in Longitudinal Studies
Title Missing Data in Longitudinal Studies PDF eBook
Author Michael J. Daniels
Publisher CRC Press
Pages 324
Release 2008-03-11
Genre Mathematics
ISBN 1420011189

Download Missing Data in Longitudinal Studies Book in PDF, Epub and Kindle

Drawing from the authors' own work and from the most recent developments in the field, Missing Data in Longitudinal Studies: Strategies for Bayesian Modeling and Sensitivity Analysis describes a comprehensive Bayesian approach for drawing inference from incomplete data in longitudinal studies. To illustrate these methods, the authors employ

Applied Bayesian Modelling

Applied Bayesian Modelling
Title Applied Bayesian Modelling PDF eBook
Author Peter Congdon
Publisher John Wiley & Sons
Pages 464
Release 2014-05-23
Genre Mathematics
ISBN 1118895053

Download Applied Bayesian Modelling Book in PDF, Epub and Kindle

This book provides an accessible approach to Bayesian computing and data analysis, with an emphasis on the interpretation of real data sets. Following in the tradition of the successful first edition, this book aims to make a wide range of statistical modeling applications accessible using tested code that can be readily adapted to the reader's own applications. The second edition has been thoroughly reworked and updated to take account of advances in the field. A new set of worked examples is included. The novel aspect of the first edition was the coverage of statistical modeling using WinBUGS and OPENBUGS. This feature continues in the new edition along with examples using R to broaden appeal and for completeness of coverage.

Statistical Analysis with Missing Data

Statistical Analysis with Missing Data
Title Statistical Analysis with Missing Data PDF eBook
Author Roderick J. A. Little
Publisher John Wiley & Sons
Pages 462
Release 2019-04-23
Genre Mathematics
ISBN 0470526793

Download Statistical Analysis with Missing Data Book in PDF, Epub and Kindle

An up-to-date, comprehensive treatment of a classic text on missing data in statistics The topic of missing data has gained considerable attention in recent decades. This new edition by two acknowledged experts on the subject offers an up-to-date account of practical methodology for handling missing data problems. Blending theory and application, authors Roderick Little and Donald Rubin review historical approaches to the subject and describe simple methods for multivariate analysis with missing values. They then provide a coherent theory for analysis of problems based on likelihoods derived from statistical models for the data and the missing data mechanism, and then they apply the theory to a wide range of important missing data problems. Statistical Analysis with Missing Data, Third Edition starts by introducing readers to the subject and approaches toward solving it. It looks at the patterns and mechanisms that create the missing data, as well as a taxonomy of missing data. It then goes on to examine missing data in experiments, before discussing complete-case and available-case analysis, including weighting methods. The new edition expands its coverage to include recent work on topics such as nonresponse in sample surveys, causal inference, diagnostic methods, and sensitivity analysis, among a host of other topics. An updated “classic” written by renowned authorities on the subject Features over 150 exercises (including many new ones) Covers recent work on important methods like multiple imputation, robust alternatives to weighting, and Bayesian methods Revises previous topics based on past student feedback and class experience Contains an updated and expanded bibliography The authors were awarded The Karl Pearson Prize in 2017 by the International Statistical Institute, for a research contribution that has had profound influence on statistical theory, methodology or applications. Their work "has been no less than defining and transforming." (ISI) Statistical Analysis with Missing Data, Third Edition is an ideal textbook for upper undergraduate and/or beginning graduate level students of the subject. It is also an excellent source of information for applied statisticians and practitioners in government and industry.

Causal Inference in Statistics, Social, and Biomedical Sciences

Causal Inference in Statistics, Social, and Biomedical Sciences
Title Causal Inference in Statistics, Social, and Biomedical Sciences PDF eBook
Author Guido W. Imbens
Publisher Cambridge University Press
Pages 647
Release 2015-04-06
Genre Business & Economics
ISBN 0521885884

Download Causal Inference in Statistics, Social, and Biomedical Sciences Book in PDF, Epub and Kindle

This text presents statistical methods for studying causal effects and discusses how readers can assess such effects in simple randomized experiments.

Data Analysis Using Regression and Multilevel/Hierarchical Models

Data Analysis Using Regression and Multilevel/Hierarchical Models
Title Data Analysis Using Regression and Multilevel/Hierarchical Models PDF eBook
Author Andrew Gelman
Publisher Cambridge University Press
Pages 654
Release 2007
Genre Mathematics
ISBN 9780521686891

Download Data Analysis Using Regression and Multilevel/Hierarchical Models Book in PDF, Epub and Kindle

This book, first published in 2007, is for the applied researcher performing data analysis using linear and nonlinear regression and multilevel models.