Self-adjoint Extensions in Quantum Mechanics

Self-adjoint Extensions in Quantum Mechanics
Title Self-adjoint Extensions in Quantum Mechanics PDF eBook
Author D.M. Gitman
Publisher Springer Science & Business Media
Pages 523
Release 2012-04-27
Genre Science
ISBN 0817646620

Download Self-adjoint Extensions in Quantum Mechanics Book in PDF, Epub and Kindle

This exposition is devoted to a consistent treatment of quantization problems, based on appealing to some nontrivial items of functional analysis concerning the theory of linear operators in Hilbert spaces. The authors begin by considering quantization problems in general, emphasizing the nontriviality of consistent operator construction by presenting paradoxes to the naive treatment. It then builds the necessary mathematical background following it by the theory of self-adjoint extensions. By considering several problems such as the one-dimensional Calogero problem, the Aharonov-Bohm problem, the problem of delta-like potentials and relativistic Coulomb problemIt then shows how quantization problems associated with correct definition of observables can be treated consistently for comparatively simple quantum-mechanical systems. In the end, related problems in quantum field theory are briefly introduced. This well-organized text is most suitable for students and post graduates interested in deepening their understanding of mathematical problems in quantum mechanics. However, scientists in mathematical and theoretical physics and mathematicians will also find it useful.

Self-Adjoint Extension Schemes and Modern Applications to Quantum Hamiltonians

Self-Adjoint Extension Schemes and Modern Applications to Quantum Hamiltonians
Title Self-Adjoint Extension Schemes and Modern Applications to Quantum Hamiltonians PDF eBook
Author Matteo Gallone
Publisher Springer Nature
Pages 557
Release 2023-04-04
Genre Science
ISBN 303110885X

Download Self-Adjoint Extension Schemes and Modern Applications to Quantum Hamiltonians Book in PDF, Epub and Kindle

This book introduces and discusses the self-adjoint extension problem for symmetric operators on Hilbert space. It presents the classical von Neumann and Krein–Vishik–Birman extension schemes both in their modern form and from a historical perspective, and provides a detailed analysis of a range of applications beyond the standard pedagogical examples (the latter are indexed in a final appendix for the reader’s convenience). Self-adjointness of operators on Hilbert space representing quantum observables, in particular quantum Hamiltonians, is required to ensure real-valued energy levels, unitary evolution and, more generally, a self-consistent theory. Physical heuristics often produce candidate Hamiltonians that are only symmetric: their extension to suitably larger domains of self-adjointness, when possible, amounts to declaring additional physical states the operator must act on in order to have a consistent physics, and distinct self-adjoint extensions describe different physics. Realising observables self-adjointly is the first fundamental problem of quantum-mechanical modelling. The discussed applications concern models of topical relevance in modern mathematical physics currently receiving new or renewed interest, in particular from the point of view of classifying self-adjoint realisations of certain Hamiltonians and studying their spectral and scattering properties. The analysis also addresses intermediate technical questions such as characterising the corresponding operator closures and adjoints. Applications include hydrogenoid Hamiltonians, Dirac–Coulomb Hamiltonians, models of geometric quantum confinement and transmission on degenerate Riemannian manifolds of Grushin type, and models of few-body quantum particles with zero-range interaction. Graduate students and non-expert readers will benefit from a preliminary mathematical chapter collecting all the necessary pre-requisites on symmetric and self-adjoint operators on Hilbert space (including the spectral theorem), and from a further appendix presenting the emergence from physical principles of the requirement of self-adjointness for observables in quantum mechanics.

Applications of Self-Adjoint Extensions in Quantum Physics

Applications of Self-Adjoint Extensions in Quantum Physics
Title Applications of Self-Adjoint Extensions in Quantum Physics PDF eBook
Author Pavel Exner
Publisher
Pages 288
Release 2014-01-15
Genre
ISBN 9783662137611

Download Applications of Self-Adjoint Extensions in Quantum Physics Book in PDF, Epub and Kindle

II: Fourier Analysis, Self-Adjointness

II: Fourier Analysis, Self-Adjointness
Title II: Fourier Analysis, Self-Adjointness PDF eBook
Author Michael Reed
Publisher Elsevier
Pages 388
Release 1975
Genre Mathematics
ISBN 9780125850025

Download II: Fourier Analysis, Self-Adjointness Book in PDF, Epub and Kindle

Band 2.

Non-Selfadjoint Operators in Quantum Physics

Non-Selfadjoint Operators in Quantum Physics
Title Non-Selfadjoint Operators in Quantum Physics PDF eBook
Author Fabio Bagarello
Publisher John Wiley & Sons
Pages 434
Release 2015-07-20
Genre Science
ISBN 1118855280

Download Non-Selfadjoint Operators in Quantum Physics Book in PDF, Epub and Kindle

A unique discussion of mathematical methods with applications to quantum mechanics Non-Selfadjoint Operators in Quantum Physics: Mathematical Aspects presents various mathematical constructions influenced by quantum mechanics and emphasizes the spectral theory of non-adjoint operators. Featuring coverage of functional analysis and algebraic methods in contemporary quantum physics, the book discusses the recent emergence of unboundedness of metric operators, which is a serious issue in the study of parity-time-symmetric quantum mechanics. The book also answers mathematical questions that are currently the subject of rigorous analysis with potentially significant physical consequences. In addition to prompting a discussion on the role of mathematical methods in the contemporary development of quantum physics, the book features: Chapter contributions written by well-known mathematical physicists who clarify numerous misunderstandings and misnomers while shedding light on new approaches in this growing area An overview of recent inventions and advances in understanding functional analytic and algebraic methods for non-selfadjoint operators as well as the use of Krein space theory and perturbation theory Rigorous support of the progress in theoretical physics of non-Hermitian systems in addition to mathematically justified applications in various domains of physics such as nuclear and particle physics and condensed matter physics An ideal reference, Non-Selfadjoint Operators in Quantum Physics: Mathematical Aspects is useful for researchers, professionals, and academics in applied mathematics and theoretical and/or applied physics who would like to expand their knowledge of classical applications of quantum tools to address problems in their research. Also a useful resource for recent and related trends, the book is appropriate as a graduate-level and/or PhD-level text for courses on quantum mechanics and mathematical models in physics.

Contact Interactions in Quantum Mechanics: Theory, Mathematical Aspects and Applications

Contact Interactions in Quantum Mechanics: Theory, Mathematical Aspects and Applications
Title Contact Interactions in Quantum Mechanics: Theory, Mathematical Aspects and Applications PDF eBook
Author Manuel Gadella
Publisher Frontiers Media SA
Pages 182
Release 2021-03-12
Genre Science
ISBN 2889665925

Download Contact Interactions in Quantum Mechanics: Theory, Mathematical Aspects and Applications Book in PDF, Epub and Kindle

Classical and Quantum Physics

Classical and Quantum Physics
Title Classical and Quantum Physics PDF eBook
Author G. Marmo
Publisher Springer Nature
Pages 388
Release 2019-10-26
Genre Science
ISBN 3030247481

Download Classical and Quantum Physics Book in PDF, Epub and Kindle

This proceedings is based on the interdisciplinary workshop held in Madrid, 5-9 March 2018, dedicated to Alberto Ibort on his 60th birthday. Alberto has great and significantly contributed to many fields of mathematics and physics, always with highly original and innovative ideas.Most of Albertos’s scientific activity has been motivated by geometric ideas, concepts and tools that are deeply related to the framework of classical dynamics and quantum mechanics.Let us mention some of the fields of expertise of Alberto Ibort:Geometric Mechanics; Constrained Systems; Variational Principles; Multisymplectic structures for field theories; Super manifolds; Inverse problem for Bosonic and Fermionic systems; Quantum Groups, Integrable systems, BRST Symmetries; Implicit differential equations; Yang-Mills Theories; BiHamiltonian Systems; Topology Change and Quantum Boundary Conditions; Classical and Quantum Control; Orthogonal Polynomials; Quantum Field Theory and Noncommutative Spaces; Classical and Quantum Tomography; Quantum Mechanics on phase space; Wigner-Weyl formalism; Lie-Jordan Algebras, Classical and Quantum; Quantum-to-Classical transition; Contraction of Associative Algebras; contact geometry, among many others.In each contribution, one may find not only technical novelties but also completely new way of looking at the considered problems. Even an experienced reader, reading Alberto's contributions on his field of expertise, will find new perspectives on the considered topic.His enthusiasm is happily contagious, for this reason he has had, and still has, very bright students wishing to elaborate their PhD thesis under his guidance.What is more impressive, is the broad list of rather different topics on which he has contributed.