Syntactic Pattern Recognition, Applications

Syntactic Pattern Recognition, Applications
Title Syntactic Pattern Recognition, Applications PDF eBook
Author K.S. Fu
Publisher Springer Science & Business Media
Pages 278
Release 2012-12-06
Genre Science
ISBN 3642664385

Download Syntactic Pattern Recognition, Applications Book in PDF, Epub and Kindle

The many different mathematical techniques used to solve pattem recognition problems may be grouped into two general approaches: the decision-theoretic (or discriminant) approach and the syntactic (or structural) approach. In the decision-theoretic approach, aset of characteristic measurements, called features, are extracted from the pattems. Each pattem is represented by a feature vector, and the recognition of each pattem is usually made by partitioning the feature space. Applications of decision-theoretic approach indude character recognition, medical diagnosis, remote sensing, reliability and socio-economics. A relatively new approach is the syntactic approach. In the syntactic approach, ea ch pattem is expressed in terms of a composition of its components. The recognition of a pattem is usually made by analyzing the pattem structure according to a given set of rules. Earlier applications of the syntactic approach indude chromosome dassification, English character recognition and identification of bubble and spark chamber events. The purpose of this monograph is to provide a summary of the major reeent applications of syntactic pattem recognition. After a brief introduction of syntactic pattem recognition in Chapter 1, the nin e mai n chapters (Chapters 2-10) can be divided into three parts. The first three chapters concem with the analysis of waveforms using syntactic methods. Specific application examples indude peak detection and interpretation of electro cardiograms and the recognition of speech pattems. The next five chapters deal with the syntactic recognition of two-dimensional pictorial pattems.

Pattern Recognition Applications in Engineering

Pattern Recognition Applications in Engineering
Title Pattern Recognition Applications in Engineering PDF eBook
Author Burgos, Diego Alexander Tibaduiza
Publisher IGI Global
Pages 357
Release 2019-12-27
Genre Computers
ISBN 1799818411

Download Pattern Recognition Applications in Engineering Book in PDF, Epub and Kindle

The implementation of data and information analysis has become a trending solution within multiple professions. New tools and approaches are continually being developed within data analysis to further solve the challenges that come with professional strategy. Pattern recognition is an innovative method that provides comparison techniques and defines new characteristics within the information acquisition process. Despite its recent trend, a considerable amount of research regarding pattern recognition and its various strategies is lacking. Pattern Recognition Applications in Engineering is an essential reference source that discusses various strategies of pattern recognition algorithms within industrial and research applications and provides examples of results in different professional areas including electronics, computation, and health monitoring. Featuring research on topics such as condition monitoring, data normalization, and bio-inspired developments, this book is ideally designed for analysts; researchers; civil, mechanical, and electronic engineers; computing scientists; chemists; academicians; and students.

Markov Models for Pattern Recognition

Markov Models for Pattern Recognition
Title Markov Models for Pattern Recognition PDF eBook
Author Gernot A. Fink
Publisher Springer Science & Business Media
Pages 275
Release 2014-01-14
Genre Computers
ISBN 1447163087

Download Markov Models for Pattern Recognition Book in PDF, Epub and Kindle

This thoroughly revised and expanded new edition now includes a more detailed treatment of the EM algorithm, a description of an efficient approximate Viterbi-training procedure, a theoretical derivation of the perplexity measure and coverage of multi-pass decoding based on n-best search. Supporting the discussion of the theoretical foundations of Markov modeling, special emphasis is also placed on practical algorithmic solutions. Features: introduces the formal framework for Markov models; covers the robust handling of probability quantities; presents methods for the configuration of hidden Markov models for specific application areas; describes important methods for efficient processing of Markov models, and the adaptation of the models to different tasks; examines algorithms for searching within the complex solution spaces that result from the joint application of Markov chain and hidden Markov models; reviews key applications of Markov models.

Pattern Recognition

Pattern Recognition
Title Pattern Recognition PDF eBook
Author J.P. Marques de Sá
Publisher Springer Science & Business Media
Pages 331
Release 2012-12-06
Genre Computers
ISBN 3642566510

Download Pattern Recognition Book in PDF, Epub and Kindle

The book provides a comprehensive view of pattern recognition concepts and methods, illustrated with real-life applications in several areas. A CD-ROM offered with the book includes datasets and software tools, making it easier to follow in a hands-on fashion, right from the start.

Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications

Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications
Title Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications PDF eBook
Author Alvaro Pardo
Publisher Springer
Pages 795
Release 2015-10-24
Genre Computers
ISBN 331925751X

Download Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications Book in PDF, Epub and Kindle

This book constitutes the refereed proceedings of the 20th Iberoamerican Congress on Pattern Recognition, CIARP 2015, held in Montevideo, Uruguay, in November 2015. The 95 papers presented were carefully reviewed and selected from 185 submissions. The papers are organized in topical sections on applications on pattern recognition; biometrics; computer vision; gesture recognition; image classification and retrieval; image coding, processing and analysis; segmentation, analysis of shape and texture; signals analysis and processing; theory of pattern recognition; video analysis, segmentation and tracking.

Pattern Recognition Applications and Methods

Pattern Recognition Applications and Methods
Title Pattern Recognition Applications and Methods PDF eBook
Author Maria De Marsico
Publisher Springer Nature
Pages 170
Release 2020-01-24
Genre Computers
ISBN 303040014X

Download Pattern Recognition Applications and Methods Book in PDF, Epub and Kindle

This book contains revised and extended versions of selected papers from the 8th International Conference on Pattern Recognition, ICPRAM 2019, held in Prague, Czech Republic, in February 2019. The 25 full papers presented together 52 short papers and 32 poster sessions were carefully reviewed and selected from 138 initial submissions. Contributions describing applications of Pattern Recognition techniques to real-world problems, interdisciplinary research, experimental and/or theoretical studies yielding new insights that advance Pattern Recognition methods are especially encouraged.

Applications of Pattern Recognition

Applications of Pattern Recognition
Title Applications of Pattern Recognition PDF eBook
Author Carlos M. Travieso-González
Publisher
Pages 0
Release 2021
Genre Pattern perception
ISBN 9781789855616

Download Applications of Pattern Recognition Book in PDF, Epub and Kindle

Nowadays, technological advances allow the development of many applications in different fields. In this book, 'Applications of Pattern Recognition' , two important fields are shown. The first field, data analysis, is a good tool to identify patterns; in particular, it is observed by a stereoscopic calculation model based on fixation eye movement, a visual interactive programming learning system, an approach based on color analysis of Habanero chili pepper, an approach for the visualization and analysis of inconsistent data, and finally, a system for building 3D abstractions with wireframes. On the other hand, automatic systems help to detect or identify different kinds of patterns. It is applying to incomplete data analysis a retinal biometric approach based on crossing and bifurcation, an Arabic handwritten signature identification system, and finally, the use of clustering methods for gene expression data with RNA-seq.