Advances and Applications in Nonlinear Control Systems

Advances and Applications in Nonlinear Control Systems
Title Advances and Applications in Nonlinear Control Systems PDF eBook
Author Sundarapandian Vaidyanathan
Publisher Springer
Pages 679
Release 2016-03-17
Genre Technology & Engineering
ISBN 3319301691

Download Advances and Applications in Nonlinear Control Systems Book in PDF, Epub and Kindle

The book reports on the latest advances and applications of nonlinear control systems. It consists of 30 contributed chapters by subject experts who are specialized in the various topics addressed in this book. The special chapters have been brought out in the broad areas of nonlinear control systems such as robotics, nonlinear circuits, power systems, memristors, underwater vehicles, chemical processes, observer design, output regulation, backstepping control, sliding mode control, time-delayed control, variables structure control, robust adaptive control, fuzzy logic control, chaos, hyperchaos, jerk systems, hyperjerk systems, chaos control, chaos synchronization, etc. Special importance was given to chapters offering practical solutions, modeling and novel control methods for the recent research problems in nonlinear control systems. This book will serve as a reference book for graduate students and researchers with a basic knowledge of electrical and control systems engineering. The resulting design procedures on the nonlinear control systems are emphasized using MATLAB software.

Nonlinear and Adaptive Control with Applications

Nonlinear and Adaptive Control with Applications
Title Nonlinear and Adaptive Control with Applications PDF eBook
Author Alessandro Astolfi
Publisher Springer Science & Business Media
Pages 302
Release 2007-12-06
Genre Technology & Engineering
ISBN 1848000669

Download Nonlinear and Adaptive Control with Applications Book in PDF, Epub and Kindle

The authors here provide a detailed treatment of the design of robust adaptive controllers for nonlinear systems with uncertainties. They employ a new tool based on the ideas of system immersion and manifold invariance. New algorithms are delivered for the construction of robust asymptotically-stabilizing and adaptive control laws for nonlinear systems. The methods proposed lead to modular schemes that are easier to tune than their counterparts obtained from Lyapunov redesign.

Applied Nonlinear Control

Applied Nonlinear Control
Title Applied Nonlinear Control PDF eBook
Author Jean-Jacques E. Slotine
Publisher
Pages 461
Release 1991
Genre Automatic control
ISBN 9780130400499

Download Applied Nonlinear Control Book in PDF, Epub and Kindle

In this work, the authors present a global perspective on the methods available for analysis and design of non-linear control systems and detail specific applications. They provide a tutorial exposition of the major non-linear systems analysis techniques followed by a discussion of available non-linear design methods.

Nonlinear Control and Filtering Using Differential Flatness Approaches

Nonlinear Control and Filtering Using Differential Flatness Approaches
Title Nonlinear Control and Filtering Using Differential Flatness Approaches PDF eBook
Author Gerasimos G. Rigatos
Publisher Springer
Pages 755
Release 2015-06-05
Genre Technology & Engineering
ISBN 3319164201

Download Nonlinear Control and Filtering Using Differential Flatness Approaches Book in PDF, Epub and Kindle

This monograph presents recent advances in differential flatness theory and analyzes its use for nonlinear control and estimation. It shows how differential flatness theory can provide solutions to complicated control problems, such as those appearing in highly nonlinear multivariable systems and distributed-parameter systems. Furthermore, it shows that differential flatness theory makes it possible to perform filtering and state estimation for a wide class of nonlinear dynamical systems and provides several descriptive test cases. The book focuses on the design of nonlinear adaptive controllers and nonlinear filters, using exact linearization based on differential flatness theory. The adaptive controllers obtained can be applied to a wide class of nonlinear systems with unknown dynamics, and assure reliable functioning of the control loop under uncertainty and varying operating conditions. The filters obtained outperform other nonlinear filters in terms of accuracy of estimation and computation speed. The book presents a series of application examples to confirm the efficiency of the proposed nonlinear filtering and adaptive control schemes for various electromechanical systems. These include: · industrial robots; · mobile robots and autonomous vehicles; · electric power generation; · electric motors and actuators; · power electronics; · internal combustion engines; · distributed-parameter systems; and · communication systems. Differential Flatness Approaches to Nonlinear Control and Filtering will be a useful reference for academic researchers studying advanced problems in nonlinear control and nonlinear dynamics, and for engineers working on control applications in electromechanical systems.

Control of Nonlinear Dynamical Systems

Control of Nonlinear Dynamical Systems
Title Control of Nonlinear Dynamical Systems PDF eBook
Author Felix L. Chernous'ko
Publisher Springer Science & Business Media
Pages 398
Release 2008-09-26
Genre Technology & Engineering
ISBN 3540707840

Download Control of Nonlinear Dynamical Systems Book in PDF, Epub and Kindle

This book is devoted to new methods of control for complex dynamical systems and deals with nonlinear control systems having several degrees of freedom, subjected to unknown disturbances, and containing uncertain parameters. Various constraints are imposed on control inputs and state variables or their combinations. The book contains an introduction to the theory of optimal control and the theory of stability of motion, and also a description of some known methods based on these theories. Major attention is given to new methods of control developed by the authors over the last 15 years. Mechanical and electromechanical systems described by nonlinear Lagrange’s equations are considered. General methods are proposed for an effective construction of the required control, often in an explicit form. The book contains various techniques including the decomposition of nonlinear control systems with many degrees of freedom, piecewise linear feedback control based on Lyapunov’s functions, methods which elaborate and extend the approaches of the conventional control theory, optimal control, differential games, and the theory of stability. The distinctive feature of the methods developed in the book is that the c- trols obtained satisfy the imposed constraints and steer the dynamical system to a prescribed terminal state in ?nite time. Explicit upper estimates for the time of the process are given. In all cases, the control algorithms and the estimates obtained are strictly proven.

Nonlinear Control of Engineering Systems

Nonlinear Control of Engineering Systems
Title Nonlinear Control of Engineering Systems PDF eBook
Author Warren E. Dixon
Publisher Springer Science & Business Media
Pages 410
Release 2013-06-29
Genre Technology & Engineering
ISBN 1461200318

Download Nonlinear Control of Engineering Systems Book in PDF, Epub and Kindle

This practical yet rigorous book provides a development of nonlinear, Lyapunov-based tools and their use in the solution of control-theoretic problems. Rich in motivating examples and new design techniques, the text balances theoretical foundations and real-world implementation.

Nonlinear Control Systems

Nonlinear Control Systems
Title Nonlinear Control Systems PDF eBook
Author Alberto Isidori
Publisher Springer Science & Business Media
Pages 557
Release 2013-04-17
Genre Technology & Engineering
ISBN 1846286158

Download Nonlinear Control Systems Book in PDF, Epub and Kindle

The purpose of this book is to present a self-contained description of the fun damentals of the theory of nonlinear control systems, with special emphasis on the differential geometric approach. The book is intended as a graduate text as weil as a reference to scientists and engineers involved in the analysis and design of feedback systems. The first version of this book was written in 1983, while I was teach ing at the Department of Systems Science and Mathematics at Washington University in St. Louis. This new edition integrates my subsequent teaching experience gained at the University of Illinois in Urbana-Champaign in 1987, at the Carl-Cranz Gesellschaft in Oberpfaffenhofen in 1987, at the University of California in Berkeley in 1988. In addition to a major rearrangement of the last two Chapters of the first version, this new edition incorporates two additional Chapters at a more elementary level and an exposition of some relevant research findings which have occurred since 1985.