Applications of Microfluidic Systems in Biology and Medicine

Applications of Microfluidic Systems in Biology and Medicine
Title Applications of Microfluidic Systems in Biology and Medicine PDF eBook
Author Manabu Tokeshi
Publisher Springer Nature
Pages 559
Release
Genre
ISBN 9819765404

Download Applications of Microfluidic Systems in Biology and Medicine Book in PDF, Epub and Kindle

Biomedical Applications of Microfluidic Devices

Biomedical Applications of Microfluidic Devices
Title Biomedical Applications of Microfluidic Devices PDF eBook
Author Michael R. Hamblin
Publisher Academic Press
Pages 352
Release 2020-11-12
Genre Technology & Engineering
ISBN 0128187921

Download Biomedical Applications of Microfluidic Devices Book in PDF, Epub and Kindle

Biomedical Applications of Microfluidic Devices introduces the subject of microfluidics and covers the basic principles of design and synthesis of actual microchannels. The book then explores how the devices are coupled to signal read-outs and calibrated, including applications of microfluidics in areas such as tissue engineering, organ-on-a-chip devices, pathogen identification, and drug/gene delivery. This book covers high-impact fields (microarrays, organ-on-a-chip, pathogen detection, cancer research, drug delivery systems, gene delivery, and tissue engineering) and shows how microfluidics is playing a key role in these areas, which are big drivers in biomedical engineering research. This book addresses the fundamental concepts and fabrication methods of microfluidic systems for those who want to start working in the area or who want to learn about the latest advances being made. The subjects covered are also an asset to companies working in this field that need to understand the current state-of-the-art. The book is ideal for courses on microfluidics, biosensors, drug targeting, and BioMEMs, and as a reference for PhD students. The book covers the emerging and most promising areas of biomedical applications of microfluidic devices in a single place and offers a vision of the future. - Covers basic principles and design of microfluidics devices - Explores biomedical applications to areas such as tissue engineering, organ-on-a-chip, pathogen identification, and drug and gene delivery - Includes chemical applications in organic and inorganic chemistry - Serves as an ideal text for courses on microfluidics, biosensors, drug targeting, and BioMEMs, as well as a reference for PhD students

Microfluidic Devices for Biomedical Applications

Microfluidic Devices for Biomedical Applications
Title Microfluidic Devices for Biomedical Applications PDF eBook
Author Xiujun James Li
Publisher Woodhead Publishing
Pages 0
Release 2013-10-31
Genre Technology & Engineering
ISBN 9780857096975

Download Microfluidic Devices for Biomedical Applications Book in PDF, Epub and Kindle

Microfluidics or lab-on-a-chip (LOC) is an important technology suitable for numerous applications from drug delivery to tissue engineering. Microfluidic devices for biomedical applications discusses the fundamentals of microfluidics and explores in detail a wide range of medical applications. The first part of the book reviews the fundamentals of microfluidic technologies for biomedical applications with chapters focussing on the materials and methods for microfabrication, microfluidic actuation mechanisms and digital microfluidic technologies. Chapters in part two examine applications in drug discovery and controlled-delivery including micro needles. Part three considers applications of microfluidic devices in cellular analysis and manipulation, tissue engineering and their role in developing tissue scaffolds and stem cell engineering. The final part of the book covers the applications of microfluidic devices in diagnostic sensing, including genetic analysis, low-cost bioassays, viral detection, and radio chemical synthesis. Microfluidic devices for biomedical applications is an essential reference for medical device manufacturers, scientists and researchers concerned with microfluidics in the field of biomedical applications and life-science industries.

Microfluidic Technologies For Human Health

Microfluidic Technologies For Human Health
Title Microfluidic Technologies For Human Health PDF eBook
Author Robert Langer
Publisher World Scientific
Pages 495
Release 2012-12-26
Genre Technology & Engineering
ISBN 9814405531

Download Microfluidic Technologies For Human Health Book in PDF, Epub and Kindle

The field of microfluidics has in the last decade permeated many disciplines, from physics to biology and chemistry, and from bioengineering to medical research. One of the most important applications of lab-on-a-chip devices in medicine and related disciplines is disease diagnostics, which involves steps from biological sample/analyte loading to storage, detection, and analysis. The chapters collected in this book detail recent advances in these processes using microfluidic devices and systems. The reviews of portable devices for diagnostic purposes are likely to evoke interest and raise new research questions in interdisciplinary fields (e.g., efficient MEMS/microfluidic engineering driven by biological and medical applications).The variety of the selected topics (general relevance of microfluidics in medical and bioengineering research, fabrication, advances in on-chip sample detection and analysis, and specific disease models) ensures that each of them can be viewed in the larger context of microfluidic-mediated diagnostics.

Open-Channel Microfluidics

Open-Channel Microfluidics
Title Open-Channel Microfluidics PDF eBook
Author Jean Berthier
Publisher Morgan & Claypool Publishers
Pages 171
Release 2019-09-04
Genre Technology & Engineering
ISBN 1643276646

Download Open-Channel Microfluidics Book in PDF, Epub and Kindle

Open microfluidics, the study of microflows having a boundary with surrounding air, encompasses different aspects such as paper or thread-based microfluidics, droplet microfluidics and open-channel microfluidics. Open-channel microflow is a flow at the micro-scale, guided by solid structures, and having at least a free boundary (with air or vapor) other than the advancing meniscus. This book is devoted to the study of open-channel microfluidics which (contrary to paper or thread or droplet microfluidics) is still very sparsely documented, but bears many new applications in biology, biotechnology, medicine, material and space sciences. Capillarity being the principal force triggering an open microflow, the principles of capillarity are first recalled. The onset of open-channel microflow is next analyzed and the fundamental notion of generalized Cassie angle (the apparent contact angle which accounts for the presence of air) is presented. The theory of the dynamics of open-channel microflows is then developed, using the notion of averaged friction length which accounts for the presence of air along the boundaries of the flow domain. Different channel morphologies are studied and geometrical features such as valves and capillary pumps are examined. An introduction to two-phase open-channel microflows is also presented showing that immiscible plugs can be transported by an open-channel flow. Finally, a selection of interesting applications in the domains of space, materials, medicine and biology is presented, showing the potentialities of open-channel microfluidics.

Multidisciplinary Microfluidic and Nanofluidic Lab-on-a-Chip

Multidisciplinary Microfluidic and Nanofluidic Lab-on-a-Chip
Title Multidisciplinary Microfluidic and Nanofluidic Lab-on-a-Chip PDF eBook
Author Xiujun James Li
Publisher Elsevier
Pages 484
Release 2021-09-23
Genre Science
ISBN 0444594329

Download Multidisciplinary Microfluidic and Nanofluidic Lab-on-a-Chip Book in PDF, Epub and Kindle

Multidisciplinary Microfluidic and Nanofluidic Lab-on-a-Chip: Principles and Applications provides chemists, biophysicists, engineers, life scientists, biotechnologists, and pharmaceutical scientists with the principles behind the design, manufacture, and testing of life sciences microfluidic systems. This book serves as a reference for technologies and applications in multidisciplinary areas, with an emphasis on quickly developing or new emerging areas, including digital microfluidics, nanofluidics, papers-based microfluidics, and cell biology. The book offers practical guidance on how to design, analyze, fabricate, and test microfluidic devices and systems for a wide variety of applications including separations, disease detection, cellular analysis, DNA analysis, proteomics, and drug delivery. Calculations, solved problems, data tables, and design rules are provided to help researchers understand microfluidic basic theory and principles and apply this knowledge to their own unique designs. Recent advances in microfluidics and microsystems for life sciences are impacting chemistry, biophysics, molecular, cell biology, and medicine for applications that include DNA analysis, drug discovery, disease research, and biofluid and environmental monitoring. Provides calculations, solved problems, data tables and design rules to help understand microfluidic basic theory and principles Gives an applied understanding of the principles behind the design, manufacture, and testing of microfluidic systems Emphasizes on quickly developing and emerging areas, including digital microfluidics, nanofluidics, papers-based microfluidics, and cell biology

Microfluidics

Microfluidics
Title Microfluidics PDF eBook
Author Yu Song
Publisher John Wiley & Sons
Pages 576
Release 2018-05-07
Genre Science
ISBN 3527341064

Download Microfluidics Book in PDF, Epub and Kindle

The first book offering a global overview of fundamental microfluidics and the wide range of possible applications, for example, in chemistry, biology, and biomedical science. As such, it summarizes recent progress in microfluidics, including its origin and development, the theoretical fundamentals, and fabrication techniques for microfluidic devices. The book also comprehensively covers the fluid mechanics, physics and chemistry as well as applications in such different fields as detection and synthesis of inorganic and organic materials. A useful reference for non-specialists and a basic guideline for research scientists and technicians already active in this field or intending to work in microfluidics.