Genetic and Genomic Resources for Grain Cereals Improvement
Title | Genetic and Genomic Resources for Grain Cereals Improvement PDF eBook |
Author | Mohar Singh |
Publisher | Academic Press |
Pages | 386 |
Release | 2015-11-10 |
Genre | Business & Economics |
ISBN | 0128020377 |
Genetic and Genomic Resources For Cereals Improvement is the first book to bring together the latest available genetic resources and genomics to facilitate the identification of specific germplasm, trait mapping, and allele mining that are needed to more effectively develop biotic and abiotic-stress-resistant grains. As grain cereals, including rice, wheat, maize, barley, sorghum, and millets constitute the bulk of global diets, both of vegetarian and non-vegetarian, there is a greater need for further genetic improvement, breeding, and plant genetic resources to secure the future food supply. This book is an invaluable resource for researchers, crop biologists, and students working with crop development and the changes in environmental climate that have had significant impact on crop production. It includes the latest information on tactics that ensure that environmentally robust genes and crops resilient to climate change are identified and preserved. - Provides a single-volume resource on the global research work on grain cereals genetics and genomics - Presents information for effectively managing and utilizing the genetic resources of this core food supply source - Includes coverage of rice, wheat, maize, barley, sorghum, and pearl, finger and foxtail millets
Applications of Genetic and Genomic Research in Cereals
Title | Applications of Genetic and Genomic Research in Cereals PDF eBook |
Author | Thomas Miedaner |
Publisher | Woodhead Publishing |
Pages | 382 |
Release | 2018-11-19 |
Genre | Technology & Engineering |
ISBN | 0081022131 |
Applications of Genetic and Genomic Research in Cereals covers new techniques for practical breeding, also discussing genetic and genomic approaches for improving special traits. Additional sections cover drought tolerance, biotic stress, biomass production, the impact of modern techniques on practical breeding, hybrid breeding, genetic diversity, and genomic selection. Written by an international team of top academics and edited by an expert in the field, this book will be of value to academics working in the agricultural sciences and essential reading for professionals working in plant breeding. - Provides in-depth and comprehensive coverage of a rapidly developing field - Presents techniques used in genetic and genomics research, with coverage of genotyping, gene cloning, genome editing and engineering and phenotyping in various cereals - Includes the latest genetic and genomic approaches for improving special traits - drought tolerance, biotic stress and biomass production - Covers breeding practices, with chapters on the genetic diversity of wheat, hybrid breeding and the potential of rye and barley crops
Genomic Designing for Biotic Stress Resistant Cereal Crops
Title | Genomic Designing for Biotic Stress Resistant Cereal Crops PDF eBook |
Author | Chittaranjan Kole |
Publisher | Springer Nature |
Pages | 340 |
Release | 2021-08-31 |
Genre | Science |
ISBN | 3030758796 |
This book presents deliberations on molecular and genomic mechanisms underlying the interactions of crop plants to the biotic stresses caused by different diseases and pests that are important to develop resistant crop varieties. Knowledge on the advanced genetic and genomic crop improvement strategies including molecular breeding, transgenics, genomic-assisted breeding, and the recently emerging genome editing for developing resistant varieties in cereal crops is imperative for addressing FHNEE (food, health, nutrition, energy, and environment) security. Whole genome sequencing of these crops followed by genotyping-by-sequencing has provided precise information regarding the genes conferring resistance useful for gene discovery, allele mining, and shuttle breeding which in turn opened up the scope for 'designing' crop genomes with resistance to biotic stresses. The eight chapters each dedicated to a cereal crop in this volume elucidate on different types of biotic stresses and their effects on and interaction with the crop; enumerate on the available genetic diversity with regard to biotic stress resistance among available cultivars; illuminate on the potential gene pools for utilization in interspecific gene transfer; present brief on classical genetics of stress resistance and traditional breeding for transferring them to their cultivated counterparts; depict the success stories of genetic engineering for developing biotic stress-resistant crop varieties; discuss on molecular mapping of genes and QTLs underlying stress resistance and their marker-assisted introgression into elite varieties; enunciate on different genomics-aided techniques including genomic selection, allele mining, gene discovery, and gene pyramiding for developing adaptive crop varieties with higher quantity and quality of yields, and also elaborate some case studies on genome editing focusing on specific genes for generating biotic stress-resistant crops.
Genomic Designing for Abiotic Stress Resistant Cereal Crops
Title | Genomic Designing for Abiotic Stress Resistant Cereal Crops PDF eBook |
Author | Chittaranjan Kole |
Publisher | Springer Nature |
Pages | 332 |
Release | 2021-08-31 |
Genre | Science |
ISBN | 3030758753 |
This book presents abiotic stresses that cause crop damage in the range of 6-20%. Understanding the interaction of crop plants to the abiotic stresses caused by heat, cold, drought, flooding, submergence, salinity, acidity, etc., is important to develop resistant crop varieties. Knowledge on the advanced genetic and genomic crop improvement strategies including molecular breeding, transgenics, genomic-assisted breeding, and the recently emerging genome editing for developing resistant varieties in cereal crops is imperative for addressing FPNEE (food, health, nutrition, energy, and environment) security. Whole genome sequencing of these crops followed by genotyping-by-sequencing has facilitated precise information about the genes conferring resistance useful for gene discovery, allele mining, and shuttle breeding which in turn opened up the scope for 'designing' crop genomes with resistance to abiotic stresses. The nine chapters each dedicated to a cereal crop in this volume are deliberate on different types of abiotic stresses and their effects on and interaction with crop plants; enumerate on the available genetic diversity with regard to abiotic stress resistance among available cultivars; illuminate on the potential gene pools for utilization in interspecific gene transfer; are brief on the classical genetics of stress resistance and traditional breeding for transferring them to their cultivated counterparts; elucidate on the success stories of genetic engineering for developing abiotic stress-resistant crop varieties; discuss on molecular mapping of genes and QTLs underlying stress resistance and their marker-assisted introgression into elite varieties; enunciate on different emerging genomics-aided techniques including genomic selection, allele mining, gene discovery, and gene pyramiding for developing adaptive crop varieties with higher quantity and quality, and also elaborate some case studies on genome editing focusing on specific genes for generating abiotic stress-resistant crops.
The Barley Genome
Title | The Barley Genome PDF eBook |
Author | Nils Stein |
Publisher | Springer |
Pages | 400 |
Release | 2018-08-18 |
Genre | Science |
ISBN | 3319925288 |
This book presents an overview of the state-of-the-art in barley genome analysis, covering all aspects of sequencing the genome and translating this important information into new knowledge in basic and applied crop plant biology and new tools for research and crop improvement. Unlimited access to a high-quality reference sequence is removing one of the major constraints in basic and applied research. This book summarizes the advanced knowledge of the composition of the barley genome, its genes and the much larger non-coding part of the genome, and how this information facilitates studying the specific characteristics of barley. One of the oldest domesticated crops, barley is the small grain cereal species that is best adapted to the highest altitudes and latitudes, and it exhibits the greatest tolerance to most abiotic stresses. With comprehensive access to the genome sequence, barley’s importance as a genetic model in comparative studies on crop species like wheat, rye, oats and even rice is likely to increase.
Advances in Breeding Techniques for Cereal Crops
Title | Advances in Breeding Techniques for Cereal Crops PDF eBook |
Author | Frank Ordon |
Publisher | |
Pages | |
Release | 2019 |
Genre | Grain |
ISBN | 9781786762474 |
Genetic and Genomic Resources of Grain Legume Improvement
Title | Genetic and Genomic Resources of Grain Legume Improvement PDF eBook |
Author | Mohar Singh |
Publisher | Newnes |
Pages | 322 |
Release | 2013-07-18 |
Genre | Science |
ISBN | 0123984947 |
Grain legumes, including common-bean, chickpea, pigeonpea, pea, cowpea, lentil and others, form important constituents of global diets, both vegetarian and non-vegetarian. Despite this significant role, global production has increased only marginally in the past 50 years. The slow production growth, along with a rising human population and improved buying capacity has substantially reduced the per capita availability of food legumes. Changes in environmental climate have also had significant impact on production, creating a need to identify stable donors among genetic resources for environmentally robust genes and designing crops resilient to climate change. Genetic and Genomic Resources of Grain Legume Improvement is the first book to bring together the latest resources in plant genetics and genomics to facilitate the identification of specific germplasm, trait mapping and allele mining to more effectively develop biotic and abiotic-stress-resistant grains. This book will be an invaluable resource for researchers, crop biologists and students working with crop development. - Explores origin, distribution and diversity of grain legumes - Presents information on germplasm collection, evaluation and maintenance - Offers insight into pre-breeding/germplasm enhancement efforts - Integrates genomic and genetic resources in crop improvement - Internationally contributed work