Applications of Artificial Neural Networks for Nonlinear Data
Title | Applications of Artificial Neural Networks for Nonlinear Data PDF eBook |
Author | Patel, Hiral Ashil |
Publisher | IGI Global |
Pages | 315 |
Release | 2020-09-25 |
Genre | Computers |
ISBN | 1799840433 |
Processing information and analyzing data efficiently and effectively is crucial for any company that wishes to stay competitive in its respective market. Nonlinear data presents new challenges to organizations, however, due to its complexity and unpredictability. The only technology that can properly handle this form of data is artificial neural networks. These modeling systems present a high level of benefits in analyzing complex data in a proficient manner, yet considerable research on the specific applications of these intelligent components is significantly deficient. Applications of Artificial Neural Networks for Nonlinear Data is a collection of innovative research on the contemporary nature of artificial neural networks and their specific implementations within data analysis. While highlighting topics including propagation functions, optimization techniques, and learning methodologies, this book is ideally designed for researchers, statisticians, academicians, developers, scientists, practitioners, students, and educators seeking current research on the use of artificial neural networks in diagnosing and solving nonparametric problems.
Artificial Neural Networks for Engineering Applications
Title | Artificial Neural Networks for Engineering Applications PDF eBook |
Author | Alma Y Alanis |
Publisher | Academic Press |
Pages | 176 |
Release | 2019-02-13 |
Genre | Science |
ISBN | 0128182474 |
Artificial Neural Networks for Engineering Applications presents current trends for the solution of complex engineering problems that cannot be solved through conventional methods. The proposed methodologies can be applied to modeling, pattern recognition, classification, forecasting, estimation, and more. Readers will find different methodologies to solve various problems, including complex nonlinear systems, cellular computational networks, waste water treatment, attack detection on cyber-physical systems, control of UAVs, biomechanical and biomedical systems, time series forecasting, biofuels, and more. Besides the real-time implementations, the book contains all the theory required to use the proposed methodologies for different applications.
Artificial Higher Order Neural Networks for Computer Science and Engineering: Trends for Emerging Applications
Title | Artificial Higher Order Neural Networks for Computer Science and Engineering: Trends for Emerging Applications PDF eBook |
Author | Zhang, Ming |
Publisher | IGI Global |
Pages | 660 |
Release | 2010-02-28 |
Genre | Computers |
ISBN | 1615207120 |
"This book introduces and explains Higher Order Neural Networks (HONNs) to people working in the fields of computer science and computer engineering, and how to use HONNS in these areas"--Provided by publisher.
Artificial Neural Networks
Title | Artificial Neural Networks PDF eBook |
Author | David J. Livingstone |
Publisher | Humana Press |
Pages | 0 |
Release | 2011-10-09 |
Genre | Computers |
ISBN | 9781617377389 |
In this book, international experts report the history of the application of ANN to chemical and biological problems, provide a guide to network architectures, training and the extraction of rules from trained networks, and cover many cutting-edge examples of the application of ANN to chemistry and biology. Methods involving the mapping and interpretation of Infra Red spectra and modelling environmental toxicology are included. This book is an excellent guide to this exciting field.
Process Neural Networks
Title | Process Neural Networks PDF eBook |
Author | Xingui He |
Publisher | Springer Science & Business Media |
Pages | 240 |
Release | 2010-07-05 |
Genre | Computers |
ISBN | 3540737626 |
For the first time, this book sets forth the concept and model for a process neural network. You’ll discover how a process neural network expands the mapping relationship between the input and output of traditional neural networks and greatly enhances the expression capability of artificial neural networks. Detailed illustrations help you visualize information processing flow and the mapping relationship between inputs and outputs.
Artificial Neural Networks
Title | Artificial Neural Networks PDF eBook |
Author | Joao Luis Garcia Rosa |
Publisher | BoD – Books on Demand |
Pages | 416 |
Release | 2016-10-19 |
Genre | Computers |
ISBN | 9535127047 |
The idea of simulating the brain was the goal of many pioneering works in Artificial Intelligence. The brain has been seen as a neural network, or a set of nodes, or neurons, connected by communication lines. Currently, there has been increasing interest in the use of neural network models. This book contains chapters on basic concepts of artificial neural networks, recent connectionist architectures and several successful applications in various fields of knowledge, from assisted speech therapy to remote sensing of hydrological parameters, from fabric defect classification to application in civil engineering. This is a current book on Artificial Neural Networks and Applications, bringing recent advances in the area to the reader interested in this always-evolving machine learning technique.
Neural Networks
Title | Neural Networks PDF eBook |
Author | Doug Alexander |
Publisher | |
Pages | 232 |
Release | 2020 |
Genre | Computers |
ISBN | 9781536172331 |
"With respect to the ever-increasing developments in artificial intelligence and artificial neural network applications in different scopes such as medicine, industry, biology, history, military industries, recognition science, space, machine learning and etc., Neural Networks: History and Applications first discusses a comprehensive investigation of artificial neural networks. Next, the authors focus on studies carried out with the artificial neural network approach on the emotion recognition from 2D facial expressions between 2009 and 2019. The major objective of this study is to review, identify, evaluate and analyze the performance of artificial neural network models in emotion recognition applications. This compilation also proposes a simple nonlinear approach for dipole mode index prediction where past values of dipole mode index were used as inputs, and future values were predicted by artificial neural networks. The study was also conducted for seasonal dipole mode index prediction because the dipole mode index is more prominent in the Sep-Oct-Nov season. A subsequent study focuses on how mammography has a high false negative and false positive rate. As such, computer-aided diagnosis systems have been commercialized to help in micro-calcification detection and malignancy differentiation. Yet, little has been explored in differentiating breast cancers with artificial neural networks, one example of computer-aided diagnosis systems. The authors aim to bridge this gap in research. The penultimate chapter reviews the general conditions under which synaptic plasticity most effectively takes place to support the supervised learning of a precise temporal code. Then, the accuracy of each plasticity rule with respect to its temporal encoding precision is examined, and the maximum number of input patterns it can memorize using the precise timings of individual spikes as an indicator of storage capacity in different control and recognition tasks is explored. In closing, a case study is presented centered on an intelligent decision support system that is built on a neural network model based on the Encog machine learning framework to predict cryptocurrency close prices"--