Ant Colony Optimization and Swarm Intelligence
Title | Ant Colony Optimization and Swarm Intelligence PDF eBook |
Author | Marco Dorigo |
Publisher | Springer |
Pages | 430 |
Release | 2008-09-20 |
Genre | Computers |
ISBN | 3540875271 |
The series of biannual international conferences “ANTS – International C- ference on Ant Colony Optimization and Swarm Intelligence”, now in its sixth edition, was started ten years ago, with the organization of ANTS’98. As some readers might recall, the ?rst edition of ANTS was titled “ANTS’98 – From Ant Colonies to Arti?cial Ants: First International Workshop on Ant Colony Op- mization. ” In fact, at that time the focus was mainly on ant colony optimization (ACO), the ?rst swarm intelligence algorithm to go beyond a pure scienti?c interest and to enter the realm of real-world applications. Interestingly, in the ten years after the ?rst edition there has been a gr- ing interest not only for ACO, but for a number of other studies that belong more generally to the area of swarmintelligence. The rapid growth of the swarm intelligence ?eld is attested by a number of indicators. First, the number of s- missions and participants to the ANTS conferences has steadily increased over the years. Second, a number of international conferences in computational - telligence and related disciplines organize workshops on subjects such as swarm intelligence, ant algorithms, ant colony optimization, and particle swarm op- mization. Third, IEEE startedorganizing,in 2003,the IEEE SwarmIntelligence Symposium (in order to maintain unity in this growing ?eld, we are currently establishingacooperationagreementbetweenIEEE SISandANTSsoastohave 1 IEEE SIS in odd years and ANTS in even years). Last, the Swarm Intelligence journal was born.
Ant Colony Optimization
Title | Ant Colony Optimization PDF eBook |
Author | Marco Dorigo |
Publisher | MIT Press |
Pages | 324 |
Release | 2004-06-04 |
Genre | Computers |
ISBN | 9780262042192 |
An overview of the rapidly growing field of ant colony optimization that describes theoretical findings, the major algorithms, and current applications. The complex social behaviors of ants have been much studied by science, and computer scientists are now finding that these behavior patterns can provide models for solving difficult combinatorial optimization problems. The attempt to develop algorithms inspired by one aspect of ant behavior, the ability to find what computer scientists would call shortest paths, has become the field of ant colony optimization (ACO), the most successful and widely recognized algorithmic technique based on ant behavior. This book presents an overview of this rapidly growing field, from its theoretical inception to practical applications, including descriptions of many available ACO algorithms and their uses. The book first describes the translation of observed ant behavior into working optimization algorithms. The ant colony metaheuristic is then introduced and viewed in the general context of combinatorial optimization. This is followed by a detailed description and guide to all major ACO algorithms and a report on current theoretical findings. The book surveys ACO applications now in use, including routing, assignment, scheduling, subset, machine learning, and bioinformatics problems. AntNet, an ACO algorithm designed for the network routing problem, is described in detail. The authors conclude by summarizing the progress in the field and outlining future research directions. Each chapter ends with bibliographic material, bullet points setting out important ideas covered in the chapter, and exercises. Ant Colony Optimization will be of interest to academic and industry researchers, graduate students, and practitioners who wish to learn how to implement ACO algorithms.
Ant Colony Optimization and Swarm Intelligence
Title | Ant Colony Optimization and Swarm Intelligence PDF eBook |
Author | Marco Dorigo |
Publisher | Springer |
Pages | 540 |
Release | 2006-08-29 |
Genre | Computers |
ISBN | 3540384839 |
This book constitutes the refereed proceedings of the 5th International Workshop on Ant Colony Optimization and Swarm Intelligence, ANTS 2006, held in Brussels, Belgium, in September 2006. The 27 revised full papers, 23 revised short papers, and 12 extended abstracts presented were carefully reviewed and selected from 115 submissions.
Ant Colony Optimization and Swarm Intelligence
Title | Ant Colony Optimization and Swarm Intelligence PDF eBook |
Author | Directeur de Recherches Du Fnrs Marco Dorigo |
Publisher | Springer Science & Business Media |
Pages | 445 |
Release | 2004-08-19 |
Genre | Computers |
ISBN | 3540226729 |
This book constitutes the refereed proceedings of the 4th International Workshop on Ant Colony Optimization and Swarm Intelligence, ANTS 2004, held in Brussels, Belgium in September 2004. The 22 revised full papers, 19 revised short papers, and 9 poster abstracts presented were carefully reviewed and selected from 79 papers submitted. The papers are devoted to theoretical and foundational aspects of ant algorithms, ant colony optimization and swarm intelligence and deal with a broad variety of optimization applications in networking and operations research.
Swarm Intelligence Optimization
Title | Swarm Intelligence Optimization PDF eBook |
Author | Abhishek Kumar |
Publisher | John Wiley & Sons |
Pages | 384 |
Release | 2021-01-07 |
Genre | Computers |
ISBN | 1119778743 |
Resource optimization has always been a thrust area of research, and as the Internet of Things (IoT) is the most talked about topic of the current era of technology, it has become the need of the hour. Therefore, the idea behind this book was to simplify the journey of those who aspire to understand resource optimization in the IoT. To this end, included in this book are various real-time/offline applications and algorithms/case studies in the fields of engineering, computer science, information security, and cloud computing, along with the modern tools and various technologies used in systems, leaving the reader with a high level of understanding of various techniques and algorithms used in resource optimization.
Integration of Swarm Intelligence and Artificial Neural Network
Title | Integration of Swarm Intelligence and Artificial Neural Network PDF eBook |
Author | Satchidananda Dehuri |
Publisher | World Scientific |
Pages | 352 |
Release | 2011 |
Genre | Computers |
ISBN | 9814280143 |
This book provides a new forum for the dissemination of knowledge in both theoretical and applied research on swarm intelligence (SI) and artificial neural network (ANN). It accelerates interaction between the two bodies of knowledge and fosters a unified development in the next generation of computational model for machine learning. To the best of our knowledge, the integration of SI and ANN is the first attempt to integrate various aspects of both the independent research area into a single volume.
Handbook of Swarm Intelligence
Title | Handbook of Swarm Intelligence PDF eBook |
Author | Bijaya Ketan Panigrahi |
Publisher | Springer Science & Business Media |
Pages | 538 |
Release | 2011-02-04 |
Genre | Technology & Engineering |
ISBN | 364217390X |
From nature, we observe swarming behavior in the form of ant colonies, bird flocking, animal herding, honey bees, swarming of bacteria, and many more. It is only in recent years that researchers have taken notice of such natural swarming systems as culmination of some form of innate collective intelligence, albeit swarm intelligence (SI) - a metaphor that inspires a myriad of computational problem-solving techniques. In computational intelligence, swarm-like algorithms have been successfully applied to solve many real-world problems in engineering and sciences. This handbook volume serves as a useful foundational as well as consolidatory state-of-art collection of articles in the field from various researchers around the globe. It has a rich collection of contributions pertaining to the theoretical and empirical study of single and multi-objective variants of swarm intelligence based algorithms like particle swarm optimization (PSO), ant colony optimization (ACO), bacterial foraging optimization algorithm (BFOA), honey bee social foraging algorithms, and harmony search (HS). With chapters describing various applications of SI techniques in real-world engineering problems, this handbook can be a valuable resource for researchers and practitioners, giving an in-depth flavor of what SI is capable of achieving.