Anisotropic and Nonlinear Optical Waveguides
Title | Anisotropic and Nonlinear Optical Waveguides PDF eBook |
Author | C.G. Someda |
Publisher | Elsevier |
Pages | 247 |
Release | 2012-12-02 |
Genre | Science |
ISBN | 0444598944 |
Dielectric optical waveguides have been investigated for more than two decades. In the last ten years they have had the unique position of being simultaneously the backbone of a very practical and fully developed technology, as well as an extremely exciting area of basic, forefront research. Existing waveguides can be divided into two sets: one consisting of waveguides which are already in practical use, and the second of those which are still at the laboratory stage of their evolution. This book is divided into two separate parts: the first dealing with anisotropic waveguides, and the second with nonlinear behaviour. Nonlinear behaviour in optical waveguides is a topic of current research interest, an effect eagerly being sought in waveguides. The relative importance of nonlinearity versus anisotropy in theoretical papers changes enormously from problem to problem. Many theories can be quite useful and enlightening even though they neglect entirely one of the two aspects. Scientists may find their research work leading them in the near future to deal simultaneously with anisotropy and nonlinearity in order to pursue their own investigations. This book will be of interest to researchers who first need to understand the individual topics, suitably chosen from the two parts of this work, thus providing them with the necessary ingredients to pursue their explorations.
Anisotropic and Nonlinear Optical Waveguides
Title | Anisotropic and Nonlinear Optical Waveguides PDF eBook |
Author | Carlo G. Someda |
Publisher | |
Pages | 236 |
Release | 1992 |
Genre | |
ISBN | 9780444994899 |
Optical Waveguide Theory by the Finite Element Method
Title | Optical Waveguide Theory by the Finite Element Method PDF eBook |
Author | Masanori Koshiba |
Publisher | Springer |
Pages | 0 |
Release | 2012-11-07 |
Genre | Science |
ISBN | 9789401047135 |
Recent advances in the field of guided-wave optics, such as fiber optics and integrated optics, have included the introduction of arbitrarily-shaped optical waveguides which, in many cases, also happened to be arbitrarily inhomogeneous, dissipative, anisotropic, and/or nonlinear. Most of such cases of waveguide arbitrariness do not lend themselves to analytical so lutions; hence, computational tools for modeling and simulation are es sential for successful design, optimization, and realization of the optical waveguides. For this purpose, various numerical techniques have been de veloped. In particular, the finite element method (FEM) is a powerful and efficient tool for the most general (i. e. , arbitrarily-shaped, inhomogeneous, dissipative, anisotropic, and nonlinear) optical waveguide problem. Its use in industry and research is extensive, and indeed it could be said that with out it many optical waveguide problems would be incapable of solution. This book is intended for students, engineers, designers, and techni cal managers interested in a detailed description of the FEM for optical waveguide analysis. Starting from a brief review of electromagnetic theory, the first chapter provides the concepts of the FEM and its fundamentals. In addition to conventional elements, i. e. , line elements, triangular elements, tetrahedral elements, ring elements, and triangular ring elements which are utilized for one-dimensional, two-dimensional, three-dimensional, axisymmetric two dimensional, and axisymmetric three-dimensional problems, respectively, special-purpose elements, such as isoparametric elements, edge elements, infinite elements, and boundary elements, are also introduced.
Finite Element Methods for Nonlinear Optical Waveguides
Title | Finite Element Methods for Nonlinear Optical Waveguides PDF eBook |
Author | Xin-Hua Wang |
Publisher | Routledge |
Pages | 292 |
Release | 2019-06-14 |
Genre | Technology & Engineering |
ISBN | 1351448587 |
This book provides researchers at the forefront of nonlinear optical technologies with robust procedures and software for the systematic investigation of the fundamental phenomena in nonlinear optical waveguide structures. A full vectorial electromagnetic formulation is adopted and the conditions under which simplification to a scalar formulation is possible are clearly indicated. The need to model the dielectric saturation properly is identified, and improved algorithms are presented for obtaining the complete power dispersion curve of structures exhibiting bistability. As the stability analysis of nonlinear modes is crucial to the development of nonlinear model methods, an effective procedure to investigate the propagation of the scalar nonlinear waves in 3D is another important feature of the book. All of the procedures described, as well as an automatic mesh generator for the finite element method, are incorporated into a software package which is included with this book.
Guided Wave Nonlinear Optics
Title | Guided Wave Nonlinear Optics PDF eBook |
Author | D.B. Ostrowsky |
Publisher | Springer Science & Business Media |
Pages | 658 |
Release | 2012-12-06 |
Genre | Science |
ISBN | 9401125368 |
The object of this school, held at Cargese, Corsica (France) from August 12th to 24th 1991, was the presentation of the field of guided wave nonlinear optics in a comprehensive, coherent, and heuristic fashion. It seems appropriate that this school began with an historical introduction by Professor Nicolaas Bloembergen of Harvard, the acknowledged "father" of nonlinear optics, in general, and concluded with a round table discussion headed by Dr. Eric Spitz, the Scientific Director of a multinational electronics company interested in developing industrial applications of guided wave nonlinear optics. The lectures covered both the theoretical framework of the field and applications to basic scientific research, optical communications and technical instrumentation. Specific topics developed included materials for guided wave nonlinear optics, nonlinear interactions using integrated optical guides, nonlinear surface waves, solitons, fiber nonlinear optics, ultra-fast coupler switching as well as the related topic of fiber and integrated optical lasers and amplifiers. Lectures have also been devoted to squeezed states, chaos and strange attractors. The subjects covered by the school underlines one of the major ways in which this field has evolved over the past thirty some odd years. The path from the original experiments with materials requiring mega-watt power lasers to the recent developments in guided wave configurations using milliwatt power diode lasers is marked by the conjunction of ever improving fundamental scientific comprehension and continuing technological developments.
Electrooptics
Title | Electrooptics PDF eBook |
Author | Jose Manuel Cabrera |
Publisher | Elsevier |
Pages | 365 |
Release | 2012-12-02 |
Genre | Technology & Engineering |
ISBN | 0080916325 |
This comprehensive text provides an understanding of the physical phenomenon behind electrooptics. It describes in detail modern electrooptic materials and operative physical mechanisms, and devotes a full chapter tothe new materials engineering that is contributing to the development of low-dimensional systems. The book also reviews device applications in both bulk and waveguide technologies. - Provides extensive coverage in a self-contained format, and consequently useful to beginners as well as specialists - Includes the most current information - Features many tables and illustrations to facilitate understanding
Optical Waveguides
Title | Optical Waveguides PDF eBook |
Author | María L. Calvo |
Publisher | CRC Press |
Pages | 424 |
Release | 2018-10-03 |
Genre | Technology & Engineering |
ISBN | 1420017772 |
Although the theory and principles of optical waveguides have been established for more than a century, the technologies have only been realized in recent decades. Optical Waveguides: From Theory to Applied Technologies combines the most relevant aspects of waveguide theory with the study of current detailed waveguiding technologies, in particular, photonic devices, telecommunication applications, and biomedical optics. With self-contained chapters written by well-known specialists, the book features both fundamentals and applications. The first three chapters examine the theoretical foundations and bases of planar optical waveguides as well as critical optical properties such as birefringence and nonlinear optical phenomena. The next several chapters focus on contemporary waveguiding technologies that include photonic devices and telecommunications. The book concludes with discussions on additional technological applications, including biomedical optical waveguides and the potential of neutron waveguides. As optical waveguides play an increasing part in modern technology, photonics will become to the 21st century what electronics were to the 20th century. Offering both novel insights for experienced professionals and introductory material for novices, this book facilitates a better understanding of the new information era—the photonics century.