Analyzing Ecological Data

Analyzing Ecological Data
Title Analyzing Ecological Data PDF eBook
Author Alain Zuur
Publisher Springer
Pages 686
Release 2007-08-29
Genre Science
ISBN 0387459723

Download Analyzing Ecological Data Book in PDF, Epub and Kindle

This book provides a practical introduction to analyzing ecological data using real data sets. The first part gives a largely non-mathematical introduction to data exploration, univariate methods (including GAM and mixed modeling techniques), multivariate analysis, time series analysis, and spatial statistics. The second part provides 17 case studies. The case studies include topics ranging from terrestrial ecology to marine biology and can be used as a template for a reader’s own data analysis. Data from all case studies are available from www.highstat.com. Guidance on software is provided in the book.

Analyzing Environmental Data

Analyzing Environmental Data
Title Analyzing Environmental Data PDF eBook
Author Walter W. Piegorsch
Publisher John Wiley & Sons
Pages 520
Release 2005-03-04
Genre Mathematics
ISBN 9780470848364

Download Analyzing Environmental Data Book in PDF, Epub and Kindle

Environmental statistics is a rapidly growing field, supported by advances in digital computing power, automated data collection systems, and interactive, linkable Internet software. Concerns over public and ecological health and the continuing need to support environmental policy-making and regulation have driven a concurrent explosion in environmental data analysis. This textbook is designed to address the need for trained professionals in this area. The book is based on a course which the authors have taught for many years, and prepares students for careers in environmental analysis centered on statistics and allied quantitative methods of data evaluation. The text extends beyond the introductory level, allowing students and environmental science practitioners to develop the expertise to design and perform sophisticated environmental data analyses. In particular, it: Provides a coherent introduction to intermediate and advanced methods for modeling and analyzing environmental data. Takes a data-oriented approach to describing the various methods. Illustrates the methods with real-world examples Features extensive exercises, enabling use as a course text. Includes examples of SAS computer code for implementation of the statistical methods. Connects to a Web site featuring solutions to exercises, extra computer code, and additional material. Serves as an overview of methods for analyzing environmental data, enabling use as a reference text for environmental science professionals. Graduate students of statistics studying environmental data analysis will find this invaluable as will practicing data analysts and environmental scientists including specialists in atmospheric science, biology and biomedicine, chemistry, ecology, environmental health, geography, and geology.

Ecological Data

Ecological Data
Title Ecological Data PDF eBook
Author William K. Michener
Publisher John Wiley & Sons
Pages 194
Release 2009-04-01
Genre Science
ISBN 1444311395

Download Ecological Data Book in PDF, Epub and Kindle

Ecologists are increasingly tackling difficult issues like global change, loss of biodiversity and sustainability of ecosystem services. These and related topics are enormously challenging, requiring unprecedented multidisciplinary collaboration and rapid synthesis of large amounts of diverse data into information and ultimately knowledge. New sensors, computers, data collection and storage devices and analytical and statistical methods provide a powerful tool kit to support analyses, graphics and visualizations that were unthinkable even a few years ago. New and increased emphasis on accessibility, management, processing and sharing of high-quality, well-maintained and understandable data represents a significant change in how scientists view and treat data. These issues are complex and despite their importance, are typically not addressed in database, ecological and statistical textbooks. This book addresses these issues, providing a much needed resource for those involved in designing and implementing ecological research, as well as students who are entering the environmental sciences. Chapters focus on the design of ecological studies, data management principles, scientific databases, data quality assurance, data documentation, archiving ecological data and information and processing data into information and knowledge. The book stops short of a detailed treatment of data analysis, but does provide pointers to the relevant literature in graphics, statistics and knowledge discovery. The central thesis of the book is that high quality data management systems are critical for addressing future environmental challenges. This requires a new approach to how we conduct ecological research, that views data as a resource and promotes stewardship, recycling and sharing of data. Ecological Data will be particularly useful to those ecologists and information specialists that actively design, manage and analyze environmental databases. However, it will also benefit a wider audience of scientists and students in the ecological and environmental sciences.

Multivariate Analysis of Ecological Data Using CANOCO

Multivariate Analysis of Ecological Data Using CANOCO
Title Multivariate Analysis of Ecological Data Using CANOCO PDF eBook
Author Jan Lepš
Publisher Cambridge University Press
Pages 296
Release 2003-05-29
Genre Computers
ISBN 9780521891080

Download Multivariate Analysis of Ecological Data Using CANOCO Book in PDF, Epub and Kindle

Table of contents

Multivariate Analysis of Ecological Data

Multivariate Analysis of Ecological Data
Title Multivariate Analysis of Ecological Data PDF eBook
Author Michael Greenacre
Publisher Fundacion BBVA
Pages 336
Release 2014-01-09
Genre Ecology
ISBN 8492937505

Download Multivariate Analysis of Ecological Data Book in PDF, Epub and Kindle

La diversidad biológica es fruto de la interacción entre numerosas especies, ya sean marinas, vegetales o animales, a la par que de los muchos factores limitantes que caracterizan el medio que habitan. El análisis multivariante utiliza las relaciones entre diferentes variables para ordenar los objetos de estudio según sus propiedades colectivas y luego clasificarlos; es decir, agrupar especies o ecosistemas en distintas clases compuestas cada una por entidades con propiedades parecidas. El fin último es relacionar la variabilidad biológica observada con las correspondientes características medioambientales. Multivariate Analysis of Ecological Data explica de manera completa y estructurada cómo analizar e interpretar los datos ecológicos observados sobre múltiples variables, tanto biológicos como medioambientales. Tras una introducción general a los datos ecológicos multivariantes y la metodología estadística, se abordan en capítulos específicos, métodos como aglomeración (clustering), regresión, biplots, escalado multidimensional, análisis de correspondencias (simple y canónico) y análisis log-ratio, con atención también a sus problemas de modelado y aspectos inferenciales. El libro plantea una serie de aplicaciones a datos reales derivados de investigaciones ecológicas, además de dos casos detallados que llevan al lector a apreciar los retos de análisis, interpretación y comunicación inherentes a los estudios a gran escala y los diseños complejos.

Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and Stan

Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and Stan
Title Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and Stan PDF eBook
Author Franzi Korner-Nievergelt
Publisher Academic Press
Pages 329
Release 2015-04-04
Genre Science
ISBN 0128016787

Download Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and Stan Book in PDF, Epub and Kindle

Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and STAN examines the Bayesian and frequentist methods of conducting data analyses. The book provides the theoretical background in an easy-to-understand approach, encouraging readers to examine the processes that generated their data. Including discussions of model selection, model checking, and multi-model inference, the book also uses effect plots that allow a natural interpretation of data. Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and STAN introduces Bayesian software, using R for the simple modes, and flexible Bayesian software (BUGS and Stan) for the more complicated ones. Guiding the ready from easy toward more complex (real) data analyses ina step-by-step manner, the book presents problems and solutions—including all R codes—that are most often applicable to other data and questions, making it an invaluable resource for analyzing a variety of data types. - Introduces Bayesian data analysis, allowing users to obtain uncertainty measurements easily for any derived parameter of interest - Written in a step-by-step approach that allows for eased understanding by non-statisticians - Includes a companion website containing R-code to help users conduct Bayesian data analyses on their own data - All example data as well as additional functions are provided in the R-package blmeco

Environmental Data Analysis with MatLab

Environmental Data Analysis with MatLab
Title Environmental Data Analysis with MatLab PDF eBook
Author William Menke
Publisher Elsevier
Pages 282
Release 2011-09-02
Genre Computers
ISBN 0123918863

Download Environmental Data Analysis with MatLab Book in PDF, Epub and Kindle

"Environmental Data Analysis with MatLab" is for students and researchers working to analyze real data sets in the environmental sciences. One only has to consider the global warming debate to realize how critically important it is to be able to derive clear conclusions from often-noisy data drawn from a broad range of sources. This book teaches the basics of the underlying theory of data analysis, and then reinforces that knowledge with carefully chosen, realistic scenarios. MatLab, a commercial data processing environment, is used in these scenarios; significant content is devoted to teaching how it can be effectively used in an environmental data analysis setting. The book, though written in a self-contained way, is supplemented with data sets and MatLab scripts that can be used as a data analysis tutorial. It is well written and outlines a clear learning path for researchers and students. It uses real world environmental examples and case studies. It has MatLab software for application in a readily-available software environment. Homework problems help user follow up upon case studies with homework that expands them.