Analytical Electron Microscopy for Materials Science

Analytical Electron Microscopy for Materials Science
Title Analytical Electron Microscopy for Materials Science PDF eBook
Author DAISUKE Shindo
Publisher Springer Science & Business Media
Pages 162
Release 2013-04-17
Genre Science
ISBN 4431669884

Download Analytical Electron Microscopy for Materials Science Book in PDF, Epub and Kindle

Analytical electron microscopy is one of the most powerful tools today for characterization of the advanced materials that support the nanotechnology of the twenty-first century. In this book the authors clearly explain both the basic principles and the latest developments in the field. In addition to a fundamental description of the inelastic scattering process, an explanation of the constituent hardware is provided. Standard quantitative analytical techniques employing electron energy-loss spectroscopy and energy-dispersive X-ray spectroscopy are also explained, along with elemental mapping techniques. Included are sections on convergent beam electron diffraction and electron holography utilizing the field emission gun. With generous use of illustrations and experimental data, this book is a valuable resource for anyone concerned with materials characterization, electron microscopy, materials science, crystallography, and instrumentation.

High-Resolution Electron Microscopy for Materials Science

High-Resolution Electron Microscopy for Materials Science
Title High-Resolution Electron Microscopy for Materials Science PDF eBook
Author Daisuke Shindo
Publisher Springer Science & Business Media
Pages 196
Release 2012-12-06
Genre Technology & Engineering
ISBN 4431684220

Download High-Resolution Electron Microscopy for Materials Science Book in PDF, Epub and Kindle

High-resolution electron microscopy (HREM) has become a most powerful method for investigating the internal structure of materials on an atomic scale of around 0.1 nm. The authors clearly explain both the theory and practice of HREM for materials science. In addition to a fundamental formulation of the imaging process of HREM, there is detailed explanation of image simulationindispensable for interpretation of high-resolution images. Essential information on appropriate imaging conditions for observing lattice images and structure images is presented, and methods for extracting structural information from these observations are clearly shown, including examples in advanced materials. Dislocations, interfaces, and surfaces are dealt with, and materials such as composite ceramics, high-Tc superconductors, and quasicrystals are also considered. Included are sections on the latest instruments and techniques, such as the imaging plate and quantitative HREM.

Practical Analytical Electron Microscopy in Materials Science

Practical Analytical Electron Microscopy in Materials Science
Title Practical Analytical Electron Microscopy in Materials Science PDF eBook
Author David Bernard Williams
Publisher
Pages 153
Release 1984
Genre Electron microscopes
ISBN 9783527262243

Download Practical Analytical Electron Microscopy in Materials Science Book in PDF, Epub and Kindle

Science of Microscopy

Science of Microscopy
Title Science of Microscopy PDF eBook
Author P.W. Hawkes
Publisher Springer Science & Business Media
Pages 1336
Release 2008-08-29
Genre Technology & Engineering
ISBN 0387497625

Download Science of Microscopy Book in PDF, Epub and Kindle

This fully corrected second impression of the classic 2006 text on microscopy runs to more than 1,000 pages and covers up-to-the-minute developments in the field. The two-volume work brings together a slew of experts who present comprehensive reviews of all the latest instruments and new versions of the older ones, as well as their associated operational techniques. The chapters draw attention to their principal areas of application. A huge range of subjects are benefiting from these new tools, including semiconductor physics, medicine, molecular biology, the nanoworld in general, magnetism, and ferroelectricity. This fascinating book will be an indispensable guide for a wide range of scientists in university laboratories as well as engineers and scientists in industrial R&D departments.

Physical Principles of Electron Microscopy

Physical Principles of Electron Microscopy
Title Physical Principles of Electron Microscopy PDF eBook
Author Ray Egerton
Publisher Springer Science & Business Media
Pages 224
Release 2011-02-11
Genre Technology & Engineering
ISBN 9780387258003

Download Physical Principles of Electron Microscopy Book in PDF, Epub and Kindle

Scanning and stationary-beam electron microscopes are indispensable tools for both research and routine evaluation in materials science, the semiconductor industry, nanotechnology and the biological, forensic, and medical sciences. This book introduces current theory and practice of electron microscopy, primarily for undergraduates who need to understand how the principles of physics apply in an area of technology that has contributed greatly to our understanding of life processes and "inner space." Physical Principles of Electron Microscopy will appeal to technologists who use electron microscopes and to graduate students, university teachers and researchers who need a concise reference on the basic principles of microscopy.

Principles of Analytical Electron Microscopy

Principles of Analytical Electron Microscopy
Title Principles of Analytical Electron Microscopy PDF eBook
Author Joseph Goldstein
Publisher Springer Science & Business Media
Pages 458
Release 2013-11-11
Genre Science
ISBN 1489920374

Download Principles of Analytical Electron Microscopy Book in PDF, Epub and Kindle

Since the publication in 1979 of Introduction to Analytical Electron Microscopy (ed. J. J. Hren, J. I. Goldstein, and D. C. Joy; Plenum Press), analytical electron microscopy has continued to evolve and mature both as a topic for fundamental scientific investigation and as a tool for inorganic and organic materials characterization. Significant strides have been made in our understanding of image formation, electron diffraction, and beam/specimen interactions, both in terms of the "physics of the processes" and their practical implementation in modern instruments. It is the intent of the editors and authors of the current text, Principles of Analytical Electron Microscopy, to bring together, in one concise and readily accessible volume, these recent advances in the subject. The text begins with a thorough discussion of fundamentals to lay a foundation for today's state-of-the-art microscopy. All currently important areas in analytical electron microscopy-including electron optics, electron beam/specimen interactions, image formation, x-ray microanalysis, energy-loss spectroscopy, electron diffraction and specimen effects-have been given thorough attention. To increase the utility of the volume to a broader cross section of the scientific community, the book's approach is, in general, more descriptive than mathematical. In some areas, however, mathematical concepts are dealt with in depth, increasing the appeal to those seeking a more rigorous treatment of the subject.

A Beginners' Guide to Scanning Electron Microscopy

A Beginners' Guide to Scanning Electron Microscopy
Title A Beginners' Guide to Scanning Electron Microscopy PDF eBook
Author Anwar Ul-Hamid
Publisher Springer
Pages 422
Release 2018-10-26
Genre Technology & Engineering
ISBN 3319984829

Download A Beginners' Guide to Scanning Electron Microscopy Book in PDF, Epub and Kindle

This book was developed with the goal of providing an easily understood text for those users of the scanning electron microscope (SEM) who have little or no background in the area. The SEM is routinely used to study the surface structure and chemistry of a wide range of biological and synthetic materials at the micrometer to nanometer scale. Ease-of-use, typically facile sample preparation, and straightforward image interpretation, combined with high resolution, high depth of field, and the ability to undertake microchemical and crystallographic analysis, has made scanning electron microscopy one of the most powerful and versatile techniques for characterization today. Indeed, the SEM is a vital tool for the characterization of nanostructured materials and the development of nanotechnology. However, its wide use by professionals with diverse technical backgrounds—including life science, materials science, engineering, forensics, mineralogy, etc., and in various sectors of government, industry, and academia—emphasizes the need for an introductory text providing the basics of effective SEM imaging.A Beginners’ Guide to Scanning Electron Microscopy explains instrumentation, operation, image interpretation and sample preparation in a wide ranging yet succinct and practical text, treating the essential theory of specimen-beam interaction and image formation in a manner that can be effortlessly comprehended by the novice SEM user. This book provides a concise and accessible introduction to the essentials of SEM includes a large number of illustrations specifically chosen to aid readers' understanding of key concepts highlights recent advances in instrumentation, imaging and sample preparation techniques offers examples drawn from a variety of applications that appeal to professionals from diverse backgrounds.