Analytic Function Theory
Title | Analytic Function Theory PDF eBook |
Author | Einar Hille |
Publisher | American Mathematical Soc. |
Pages | 510 |
Release | 2002 |
Genre | Mathematics |
ISBN | 9780821829141 |
Emphasizes the conceptual and historical continuity of analytic function theory. This work covers topics including elliptic functions, entire and meromorphic functions, as well as conformal mapping. It features chapters on majorization and on functions holomorphic in a half-plane.
Analytic Function Theory, Volume I
Title | Analytic Function Theory, Volume I PDF eBook |
Author | Einar Hille |
Publisher | American Mathematical Soc. |
Pages | 322 |
Release | 2012-04-11 |
Genre | Mathematics |
ISBN | 082187568X |
Second Edition. This famous work is a textbook that emphasizes the conceptual and historical continuity of analytic function theory. The second volume broadens from a textbook to a textbook-treatise, covering the "canonical" topics (including elliptic functions, entire and meromorphic functions, as well as conformal mapping, etc.) and other topics nearer the expanding frontier of analytic function theory. In the latter category are the chapters on majorization and on functions holomorphic in a half-plane.
Elementary Theory of Analytic Functions of One or Several Complex Variables
Title | Elementary Theory of Analytic Functions of One or Several Complex Variables PDF eBook |
Author | Henri Cartan |
Publisher | Courier Corporation |
Pages | 242 |
Release | 2013-04-22 |
Genre | Mathematics |
ISBN | 0486318672 |
Basic treatment includes existence theorem for solutions of differential systems where data is analytic, holomorphic functions, Cauchy's integral, Taylor and Laurent expansions, more. Exercises. 1973 edition.
Analytic Function Theory of Several Variables
Title | Analytic Function Theory of Several Variables PDF eBook |
Author | Junjiro Noguchi |
Publisher | Springer |
Pages | 407 |
Release | 2016-08-16 |
Genre | Mathematics |
ISBN | 9811002916 |
The purpose of this book is to present the classical analytic function theory of several variables as a standard subject in a course of mathematics after learning the elementary materials (sets, general topology, algebra, one complex variable). This includes the essential parts of Grauert–Remmert's two volumes, GL227(236) (Theory of Stein spaces) and GL265 (Coherent analytic sheaves) with a lowering of the level for novice graduate students (here, Grauert's direct image theorem is limited to the case of finite maps).The core of the theory is "Oka's Coherence", found and proved by Kiyoshi Oka. It is indispensable, not only in the study of complex analysis and complex geometry, but also in a large area of modern mathematics. In this book, just after an introductory chapter on holomorphic functions (Chap. 1), we prove Oka's First Coherence Theorem for holomorphic functions in Chap. 2. This defines a unique character of the book compared with other books on this subject, in which the notion of coherence appears much later.The present book, consisting of nine chapters, gives complete treatments of the following items: Coherence of sheaves of holomorphic functions (Chap. 2); Oka–Cartan's Fundamental Theorem (Chap. 4); Coherence of ideal sheaves of complex analytic subsets (Chap. 6); Coherence of the normalization sheaves of complex spaces (Chap. 6); Grauert's Finiteness Theorem (Chaps. 7, 8); Oka's Theorem for Riemann domains (Chap. 8). The theories of sheaf cohomology and domains of holomorphy are also presented (Chaps. 3, 5). Chapter 6 deals with the theory of complex analytic subsets. Chapter 8 is devoted to the applications of formerly obtained results, proving Cartan–Serre's Theorem and Kodaira's Embedding Theorem. In Chap. 9, we discuss the historical development of "Coherence".It is difficult to find a book at this level that treats all of the above subjects in a completely self-contained manner. In the present volume, a number of classical proofs are improved and simplified, so that the contents are easily accessible for beginning graduate students.
Current Topics In Analytic Function Theory
Title | Current Topics In Analytic Function Theory PDF eBook |
Author | Shigeyoshi Owa |
Publisher | World Scientific |
Pages | 475 |
Release | 1992-12-31 |
Genre | Mathematics |
ISBN | 9814505692 |
This volume is a collection of research-and-survey articles by eminent and active workers around the world on the various areas of current research in the theory of analytic functions.Many of these articles emerged essentially from the proceedings of, and various deliberations at, three recent conferences in Japan and Korea: An International Seminar on Current Topics in Univalent Functions and Their Applications which was held in August 1990, in conjunction with the International Congress of Mathematicians at Kyoto, at Kinki University in Osaka; An International Seminar on Univalent Functions, Fractional Calculus, and Their Applications which was held in October 1990 at Fukuoka University; and also the Japan-Korea Symposium on Univalent Functions which was held in January 1991 at Gyeongsang National University in Chinju.
Analytic Functions of Several Complex Variables
Title | Analytic Functions of Several Complex Variables PDF eBook |
Author | Robert Clifford Gunning |
Publisher | American Mathematical Soc. |
Pages | 338 |
Release | 2009 |
Genre | Mathematics |
ISBN | 0821821652 |
The theory of analytic functions of several complex variables enjoyed a period of remarkable development in the middle part of the twentieth century. This title intends to provide an extensive introduction to the Oka-Cartan theory and some of its applications, and to the general theory of analytic spaces.
Analytic Functions
Title | Analytic Functions PDF eBook |
Author | M.A. Evgrafov |
Publisher | Courier Dover Publications |
Pages | 355 |
Release | 2019-09-18 |
Genre | Mathematics |
ISBN | 0486837602 |
This highly regarded text is directed toward advanced undergraduates and graduate students in mathematics who are interested in developing a firm foundation in the theory of functions of a complex variable. The treatment departs from traditional presentations in its early development of a rigorous discussion of the theory of multiple-valued analytic functions on the basis of analytic continuation. Thus it offers an early introduction of Riemann surfaces, conformal mapping, and the applications of residue theory. M. A. Evgrafov focuses on aspects of the theory that relate to modern research and assumes an acquaintance with the basics of mathematical analysis derived from a year of advanced calculus. Starting with an introductory chapter containing the fundamental results concerning limits, continuity, and integrals, the book addresses analytic functions and their properties, multiple-valued analytic functions, singular points and expansion in series, the Laplace transform, harmonic and subharmonic functions, extremal problems and distribution of values, and other subjects. Chapters are largely self-contained, making this volume equally suitable for the classroom or independent study.