Substrate Noise Coupling in Mixed-Signal ASICs

Substrate Noise Coupling in Mixed-Signal ASICs
Title Substrate Noise Coupling in Mixed-Signal ASICs PDF eBook
Author Stéphane Donnay
Publisher Springer Science & Business Media
Pages 311
Release 2006-05-31
Genre Technology & Engineering
ISBN 0306481707

Download Substrate Noise Coupling in Mixed-Signal ASICs Book in PDF, Epub and Kindle

This book is the first in a series of three dedicated to advanced topics in Mixed-Signal IC design methodologies. It is one of the results achieved by the Mixed-Signal Design Cluster, an initiative launched in 1998 as part of the TARDIS project, funded by the European Commission within the ESPRIT-IV Framework. This initiative aims to promote the development of new design and test methodologies for Mixed-Signal ICs, and to accelerate their adoption by industrial users. As Microelectronics evolves, Mixed-Signal techniques are gaining a significant importance due to the wide spread of applications where an analog front-end is needed to drive a complex digital-processing subsystem. In this sense, Analog and Mixed-Signal circuits are recognized as a bottleneck for the market acceptance of Systems-On-Chip, because of the inherent difficulties involved in the design and test of these circuits. Specially, problems arising from the use of a common substrate for analog and digital components are a main limiting factor. The Mixed-Signal Cluster has been formed by a group of 11 Research and Development projects, plus a specific action to promote the dissemination of design methodologies, techniques, and supporting tools developed within the Cluster projects. The whole action, ending in July 2002, has been assigned an overall budget of more than 8 million EURO.

Substrate Noise Coupling in RFICs

Substrate Noise Coupling in RFICs
Title Substrate Noise Coupling in RFICs PDF eBook
Author Ahmed Helmy
Publisher Springer Science & Business Media
Pages 129
Release 2008-03-23
Genre Technology & Engineering
ISBN 1402081669

Download Substrate Noise Coupling in RFICs Book in PDF, Epub and Kindle

The book reports modeling and simulation techniques for substrate noise coupling effects in RFICs and introduces isolation structures and design guides to mitigate such effects with the ultimate goal of enhancing the yield of RF and mixed signal SoCs. The book further reports silicon measurements, and new test and noise isolation structures. To the authors’ knowledge, this is the first title devoted to the topic of substrate noise coupling in RFICs as part of a large SoC.

Substrate Noise

Substrate Noise
Title Substrate Noise PDF eBook
Author Edoardo Charbon
Publisher Springer Science & Business Media
Pages 178
Release 2007-05-08
Genre Technology & Engineering
ISBN 0306481715

Download Substrate Noise Book in PDF, Epub and Kindle

In the past decade, substrate noise has had a constant and significant impact on the design of analog and mixed-signal integrated circuits. Only recently, with advances in chip miniaturization and innovative circuit design, has substrate noise begun to plague fully digital circuits as well. To combat the effects of substrate noise, heavily over-designed structures are generally adopted, thus seriously limiting the advantages of innovative technologies. Substrate Noise: Analysis and Optimization for IC Design addresses the main problems posed by substrate noise from both an IC and a CAD designer perspective. The effects of substrate noise on performance in digital, analog, and mixed-signal circuits are presented, along with the mechanisms underlying noise generation, injection, and transport. Popular solutions to the substrate noise problem and the trade-offs often debated by designers are extensively discussed. Non-traditional approaches as well as semi-automated techniques to combat substrate noise are also addressed. Substrate Noise: Analysis and Optimization for IC Design will be of interest to researchers and professionals interested in signal integrity, as well as to mixed signal and RF designers.

Noise Coupling in System-on-Chip

Noise Coupling in System-on-Chip
Title Noise Coupling in System-on-Chip PDF eBook
Author Thomas Noulis
Publisher CRC Press
Pages 519
Release 2018-01-09
Genre Technology & Engineering
ISBN 1138031615

Download Noise Coupling in System-on-Chip Book in PDF, Epub and Kindle

Noise Coupling is the root-cause of the majority of Systems on Chip (SoC) product fails. The book discusses a breakthrough substrate coupling analysis flow and modelling toolset, addressing the needs of the design community. The flow provides capability to analyze noise components, propagating through the substrate, the parasitic interconnects and the package. Using this book, the reader can analyze and avoid complex noise coupling that degrades RF and mixed signal design performance, while reducing the need for conservative design practices. With chapters written by leading international experts in the field, novel methodologies are provided to identify noise coupling in silicon. It additionally features case studies that can be found in any modern CMOS SoC product for mobile communications, automotive applications and readout front ends.

Analysis and Simulation of Noise in Nonlinear Electronic Circuits and Systems

Analysis and Simulation of Noise in Nonlinear Electronic Circuits and Systems
Title Analysis and Simulation of Noise in Nonlinear Electronic Circuits and Systems PDF eBook
Author Alper Demir
Publisher Springer Science & Business Media
Pages 278
Release 2012-12-06
Genre Technology & Engineering
ISBN 1461560632

Download Analysis and Simulation of Noise in Nonlinear Electronic Circuits and Systems Book in PDF, Epub and Kindle

In electronic circuit and system design, the word noise is used to refer to any undesired excitation on the system. In other contexts, noise is also used to refer to signals or excitations which exhibit chaotic or random behavior. The source of noise can be either internal or external to the system. For instance, the thermal and shot noise generated within integrated circuit devices are in ternal noise sources, and the noise picked up from the environment through electromagnetic interference is an external one. Electromagnetic interference can also occur between different components of the same system. In integrated circuits (Ies), signals in one part of the system can propagate to the other parts of the same system through electromagnetic coupling, power supply lines and the Ie substrate. For instance, in a mixed-signal Ie, the switching activity in the digital parts of the circuit can adversely affect the performance of the analog section of the circuit by traveling through the power supply lines and the substrate. Prediction of the effect of these noise sources on the performance of an electronic system is called noise analysis or noise simulation. A methodology for the noise analysis or simulation of an electronic system usually has the following four components: 2 NOISE IN NONLINEAR ELECTRONIC CIRCUITS • Mathematical representations or models for the noise sources. • Mathematical model or representation for the system that is under the in fluence of the noise sources.

Analysis and Solutions for Switching Noise Coupling in Mixed-Signal ICs

Analysis and Solutions for Switching Noise Coupling in Mixed-Signal ICs
Title Analysis and Solutions for Switching Noise Coupling in Mixed-Signal ICs PDF eBook
Author X. Aragones
Publisher Springer Science & Business Media
Pages 242
Release 2013-03-09
Genre Technology & Engineering
ISBN 1475730136

Download Analysis and Solutions for Switching Noise Coupling in Mixed-Signal ICs Book in PDF, Epub and Kindle

Modern microelectronic design is characterized by the integration of full systems on a single die. These systems often include large high performance digital circuitry, high resolution analog parts, high driving I/O, and maybe RF sections. Designers of such systems are constantly faced with the challenge to achieve compatibility in electrical characteristics of every section: some circuitry presents fast transients and large consumption spikes, whereas others require quiet environments to achieve resolutions well beyond millivolts. Coupling between those sections is usually unavoidable, since the entire system shares the same silicon substrate bulk and the same package. Understanding the way coupling is produced, and knowing methods to isolate coupled circuitry, and how to apply every method, is then mandatory knowledge for every IC designer. Analysis and Solutions for Switching Noise Coupling in Mixed-Signal ICs is an in-depth look at coupling through the common silicon substrate, and noise at the power supply lines. It explains the elementary knowledge needed to understand these phenomena and presents a review of previous works and new research results. The aim is to provide an understanding of the reasons for these particular ways of coupling, review and suggest solutions to noise coupling, and provide criteria to apply noise reduction. Analysis and Solutions for Switching Noise Coupling in Mixed-Signal ICs is an ideal book, both as introductory material to noise-coupling problems in mixed-signal ICs, and for more advanced designers facing this problem.

Mixed-Signal Methodology Guide

Mixed-Signal Methodology Guide
Title Mixed-Signal Methodology Guide PDF eBook
Author Jess Chen
Publisher Lulu.com
Pages 410
Release 2012
Genre Technology & Engineering
ISBN 130003520X

Download Mixed-Signal Methodology Guide Book in PDF, Epub and Kindle

This book, the Mixed-signal Methodology Guide: Advanced Methodology for AMS IP and SoC Design, Verification, and Implementation provides a broad overview of the design, verification and implementation methodologies required for today's mixed-signal designs. The book covers mixed-signal design trends and challenges, abstraction of analog using behavioral models, assertion-based metric-driven verification methodology applied on analog and mixed-signal and verification of low power intent in mixed-signal design. It also describes methodology for physical implementation in context of concurrent mixed-signal design and for handling advanced node physical effects. The book contains many practical examples of models and techniques. The authors believe it should serve as a reference to many analog, digital and mixed-signal designers, verification, physical implementation engineers and managers in their pursuit of information for a better methodology required to address the challenges of modern mixed-signal design.