Analysis of Parallel Spike Trains
Title | Analysis of Parallel Spike Trains PDF eBook |
Author | Sonja Grün |
Publisher | Springer Science & Business Media |
Pages | 447 |
Release | 2010-08-18 |
Genre | Medical |
ISBN | 1441956751 |
Solid and transparent data analysis is the most important basis for reliable interpretation of experiments. The technique of parallel spike train recordings using multi-electrode arrangements has been available for many decades now, but only recently gained wide popularity among electro physiologists. Many traditional analysis methods are based on firing rates obtained by trial-averaging, and some of the assumptions for such procedures to work can be ignored without serious consequences. The situation is different for correlation analysis, the result of which may be considerably distorted if certain critical assumptions are violated. The focus of this book is on concepts and methods of correlation analysis (synchrony, patterns, rate covariance), combined with a solid introduction into approaches for single spike trains, which represent the basis of correlations analysis. The book also emphasizes pitfalls and potential wrong interpretations of data due to violations of critical assumptions.
Analysis of Parallel Spike Trains
Title | Analysis of Parallel Spike Trains PDF eBook |
Author | Sonja Grün |
Publisher | Springer |
Pages | 444 |
Release | 2010-08-30 |
Genre | Medical |
ISBN | 9781441956743 |
Solid and transparent data analysis is the most important basis for reliable interpretation of experiments. The technique of parallel spike train recordings using multi-electrode arrangements has been available for many decades now, but only recently gained wide popularity among electro physiologists. Many traditional analysis methods are based on firing rates obtained by trial-averaging, and some of the assumptions for such procedures to work can be ignored without serious consequences. The situation is different for correlation analysis, the result of which may be considerably distorted if certain critical assumptions are violated. The focus of this book is on concepts and methods of correlation analysis (synchrony, patterns, rate covariance), combined with a solid introduction into approaches for single spike trains, which represent the basis of correlations analysis. The book also emphasizes pitfalls and potential wrong interpretations of data due to violations of critical assumptions.
Springer Handbook of Bio-/Neuro-Informatics
Title | Springer Handbook of Bio-/Neuro-Informatics PDF eBook |
Author | Nikola Kasabov |
Publisher | Springer Science & Business Media |
Pages | 1239 |
Release | 2013-11-30 |
Genre | Technology & Engineering |
ISBN | 3642305741 |
The Springer Handbook of Bio-/Neuro-Informatics is the first published book in one volume that explains together the basics and the state-of-the-art of two major science disciplines in their interaction and mutual relationship, namely: information sciences, bioinformatics and neuroinformatics. Bioinformatics is the area of science which is concerned with the information processes in biology and the development and applications of methods, tools and systems for storing and processing of biological information thus facilitating new knowledge discovery. Neuroinformatics is the area of science which is concerned with the information processes in biology and the development and applications of methods, tools and systems for storing and processing of biological information thus facilitating new knowledge discovery. The text contains 62 chapters organized in 12 parts, 6 of them covering topics from information science and bioinformatics, and 6 cover topics from information science and neuroinformatics. Each chapter consists of three main sections: introduction to the subject area, presentation of methods and advanced and future developments. The Springer Handbook of Bio-/Neuroinformatics can be used as both a textbook and as a reference for postgraduate study and advanced research in these areas. The target audience includes students, scientists, and practitioners from the areas of information, biological and neurosciences. With Forewords by Shun-ichi Amari of the Brain Science Institute, RIKEN, Saitama and Karlheinz Meier of the University of Heidelberg, Kirchhoff-Institute of Physics and Co-Director of the Human Brain Project.
Neuronal Dynamics
Title | Neuronal Dynamics PDF eBook |
Author | Wulfram Gerstner |
Publisher | Cambridge University Press |
Pages | 591 |
Release | 2014-07-24 |
Genre | Computers |
ISBN | 1107060834 |
This solid introduction uses the principles of physics and the tools of mathematics to approach fundamental questions of neuroscience.
Advances in Intelligent Data Analysis XII
Title | Advances in Intelligent Data Analysis XII PDF eBook |
Author | Allan Tucker |
Publisher | Springer |
Pages | 476 |
Release | 2013-10-16 |
Genre | Computers |
ISBN | 3642413986 |
This book constitutes the refereed conference proceedings of the 12th International Conference on Intelligent Data Analysis, which was held in October 2013 in London, UK. The 36 revised full papers together with 3 invited papers were carefully reviewed and selected from 84 submissions handling all kinds of modeling and analysis methods, irrespective of discipline. The papers cover all aspects of intelligent data analysis, including papers on intelligent support for modeling and analyzing data from complex, dynamical systems.
Spikes
Title | Spikes PDF eBook |
Author | Fred Rieke |
Publisher | MIT Press (MA) |
Pages | 418 |
Release | 1997 |
Genre | Action potentials (Electrophysiology) |
ISBN | 9780262181747 |
Intended for neurobiologists with an interest in mathematical analysis of neural data as well as the growing number of physicists and mathematicians interested in information processing by "real" nervous systems, Spikes provides a self-contained review of relevant concepts in information theory and statistical decision theory.
Case Studies in Neural Data Analysis
Title | Case Studies in Neural Data Analysis PDF eBook |
Author | Mark A. Kramer |
Publisher | MIT Press |
Pages | 385 |
Release | 2016-11-04 |
Genre | Science |
ISBN | 0262529378 |
A practical guide to neural data analysis techniques that presents sample datasets and hands-on methods for analyzing the data. As neural data becomes increasingly complex, neuroscientists now require skills in computer programming, statistics, and data analysis. This book teaches practical neural data analysis techniques by presenting example datasets and developing techniques and tools for analyzing them. Each chapter begins with a specific example of neural data, which motivates mathematical and statistical analysis methods that are then applied to the data. This practical, hands-on approach is unique among data analysis textbooks and guides, and equips the reader with the tools necessary for real-world neural data analysis. The book begins with an introduction to MATLAB, the most common programming platform in neuroscience, which is used in the book. (Readers familiar with MATLAB can skip this chapter and might decide to focus on data type or method type.) The book goes on to cover neural field data and spike train data, spectral analysis, generalized linear models, coherence, and cross-frequency coupling. Each chapter offers a stand-alone case study that can be used separately as part of a targeted investigation. The book includes some mathematical discussion but does not focus on mathematical or statistical theory, emphasizing the practical instead. References are included for readers who want to explore the theoretical more deeply. The data and accompanying MATLAB code are freely available on the authors' website. The book can be used for upper-level undergraduate or graduate courses or as a professional reference. A version of this textbook with all of the examples in Python is available on the MIT Press website.