Longitudinal Data Analysis for the Behavioral Sciences Using R
Title | Longitudinal Data Analysis for the Behavioral Sciences Using R PDF eBook |
Author | Jeffrey D. Long |
Publisher | SAGE |
Pages | 569 |
Release | 2012 |
Genre | Mathematics |
ISBN | 1412982685 |
This book is a practical guide for the analysis of longitudinal behavioural data. Longitudinal data consist of repeated measures collected on the same subjects over time.
Longitudinal Data Analysis
Title | Longitudinal Data Analysis PDF eBook |
Author | Jason Newsom |
Publisher | Routledge |
Pages | 407 |
Release | 2013-06-19 |
Genre | Psychology |
ISBN | 1136705473 |
This book provides accessible treatment to state-of-the-art approaches to analyzing longitudinal studies. Comprehensive coverage of the most popular analysis tools allows readers to pick and choose the techniques that best fit their research. The analyses are illustrated with examples from major longitudinal data sets including practical information about their content and design. Illustrations from popular software packages offer tips on how to interpret the results. Each chapter features suggested readings for additional study and a list of articles that further illustrate how to implement the analysis and report the results. Syntax examples for several software packages for each of the chapter examples are provided at www.psypress.com/longitudinal-data-analysis. Although many of the examples address health or social science questions related to aging, readers from other disciplines will find the analyses relevant to their work. In addition to demonstrating statistical analysis of longitudinal data, the book shows how to interpret and analyze the results within the context of the research design. The methods covered in this book are applicable to a range of applied problems including short- to long-term longitudinal studies using a range of sample sizes. The book provides non-technical, practical introductions to the concepts and issues relevant to longitudinal analysis. Topics include use of publicly available data sets, weighting and adjusting for complex sampling designs with longitudinal studies, missing data and attrition, measurement issues related to longitudinal research, the use of ANOVA and regression for average change over time, mediation analysis, growth curve models, basic and advanced structural equation models, and survival analysis. An ideal supplement for graduate level courses on data analysis and/or longitudinal modeling taught in psychology, gerontology, public health, human development, family studies, medicine, sociology, social work, and other behavioral, social, and health sciences, this multidisciplinary book will also appeal to researchers in these fields.
Modeling Contextual Effects in Longitudinal Studies
Title | Modeling Contextual Effects in Longitudinal Studies PDF eBook |
Author | Todd D. Little |
Publisher | Routledge |
Pages | 460 |
Release | 2007-03-21 |
Genre | Psychology |
ISBN | 1135594171 |
Modeling the impact and influence of contextual factors on human development is something that many talk about but few actually do. The goal of this book is to provide researchers with an accessible guide to understanding the many different ways that contextual factors can be including in longitudinal studies of human development.
Longitudinal Analysis
Title | Longitudinal Analysis PDF eBook |
Author | Lesa Hoffman |
Publisher | Routledge |
Pages | 655 |
Release | 2015-01-30 |
Genre | Psychology |
ISBN | 1317591097 |
Longitudinal Analysis provides an accessible, application-oriented treatment of introductory and advanced linear models for within-person fluctuation and change. Organized by research design and data type, the text uses in-depth examples to provide a complete description of the model-building process. The core longitudinal models and their extensions are presented within a multilevel modeling framework, paying careful attention to the modeling concerns that are unique to longitudinal data. Written in a conversational style, the text provides verbal and visual interpretation of model equations to aid in their translation to empirical research results. Overviews and summaries, boldfaced key terms, and review questions will help readers synthesize the key concepts in each chapter. Written for non-mathematically-oriented readers, this text features: A description of the data manipulation steps required prior to model estimation so readers can more easily apply the steps to their own data An emphasis on how the terminology, interpretation, and estimation of familiar general linear models relates to those of more complex models for longitudinal data Integrated model comparisons, effect sizes, and statistical inference in each example to strengthen readers’ understanding of the overall model-building process Sample results sections for each example to provide useful templates for published reports Examples using both real and simulated data in the text, along with syntax and output for SPSS, SAS, STATA, and Mplus at www.PilesOfVariance.com to help readers apply the models to their own data The book opens with the building blocks of longitudinal analysis—general ideas, the general linear model for between-person analysis, and between- and within-person models for the variance and the options within repeated measures analysis of variance. Section 2 introduces unconditional longitudinal models including alternative covariance structure models to describe within-person fluctuation over time and random effects models for within-person change. Conditional longitudinal models are presented in section 3, including both time-invariant and time-varying predictors. Section 4 reviews advanced applications, including alternative metrics of time in accelerated longitudinal designs, three-level models for multiple dimensions of within-person time, the analysis of individuals in groups over time, and repeated measures designs not involving time. The book concludes with additional considerations and future directions, including an overview of sample size planning and other model extensions for non-normal outcomes and intensive longitudinal data. Class-tested at the University of Nebraska-Lincoln and in intensive summer workshops, this is an ideal text for graduate-level courses on longitudinal analysis or general multilevel modeling taught in psychology, human development and family studies, education, business, and other behavioral, social, and health sciences. The book’s accessible approach will also help those trying to learn on their own. Only familiarity with general linear models (regression, analysis of variance) is needed for this text.
Applied Longitudinal Data Analysis
Title | Applied Longitudinal Data Analysis PDF eBook |
Author | Judith D. Singer |
Publisher | Oxford University Press |
Pages | 672 |
Release | 2003-03-27 |
Genre | Mathematics |
ISBN | 9780195152968 |
By charting changes over time and investigating whether and when events occur, researchers reveal the temporal rhythms of our lives.
Longitudinal Data Analysis
Title | Longitudinal Data Analysis PDF eBook |
Author | Garrett Fitzmaurice |
Publisher | CRC Press |
Pages | 633 |
Release | 2008-08-11 |
Genre | Mathematics |
ISBN | 142001157X |
Although many books currently available describe statistical models and methods for analyzing longitudinal data, they do not highlight connections between various research threads in the statistical literature. Responding to this void, Longitudinal Data Analysis provides a clear, comprehensive, and unified overview of state-of-the-art theory
The Behavioral and Social Sciences
Title | The Behavioral and Social Sciences PDF eBook |
Author | National Research Council |
Publisher | National Academies Press |
Pages | 301 |
Release | 1988-02-01 |
Genre | Science |
ISBN | 0309037492 |
This volume explores the scientific frontiers and leading edges of research across the fields of anthropology, economics, political science, psychology, sociology, history, business, education, geography, law, and psychiatry, as well as the newer, more specialized areas of artificial intelligence, child development, cognitive science, communications, demography, linguistics, and management and decision science. It includes recommendations concerning new resources, facilities, and programs that may be needed over the next several years to ensure rapid progress and provide a high level of returns to basic research.