Analysis of a Parallel Multigrid Algorithm
Title | Analysis of a Parallel Multigrid Algorithm PDF eBook |
Author | National Aeronautics and Space Administration (NASA) |
Publisher | Createspace Independent Publishing Platform |
Pages | 28 |
Release | 2018-08-20 |
Genre | |
ISBN | 9781722082406 |
The parallel multigrid algorithm of Frederickson and McBryan (1987) is considered. This algorithm uses multiple coarse-grid problems (instead of one problem) in the hope of accelerating convergence and is found to have a close relationship to traditional multigrid methods. Specifically, the parallel coarse-grid correction operator is identical to a traditional multigrid coarse-grid correction operator, except that the mixing of high and low frequencies caused by aliasing error is removed. Appropriate relaxation operators can be chosen to take advantage of this property. Comparisons between the standard multigrid and the new method are made. Chan, Tony F. and Tuminaro, Ray S. Unspecified Center DE-FG03-87ER-25037; DAAL03-88-K-0085; NSF DMS-87-14612; NCC2-387; NCA2-233...
Numerical Solution of Partial Differential Equations on Parallel Computers
Title | Numerical Solution of Partial Differential Equations on Parallel Computers PDF eBook |
Author | Are Magnus Bruaset |
Publisher | Springer Science & Business Media |
Pages | 491 |
Release | 2006-03-05 |
Genre | Mathematics |
ISBN | 3540316191 |
Since the dawn of computing, the quest for a better understanding of Nature has been a driving force for technological development. Groundbreaking achievements by great scientists have paved the way from the abacus to the supercomputing power of today. When trying to replicate Nature in the computer’s silicon test tube, there is need for precise and computable process descriptions. The scienti?c ?elds of Ma- ematics and Physics provide a powerful vehicle for such descriptions in terms of Partial Differential Equations (PDEs). Formulated as such equations, physical laws can become subject to computational and analytical studies. In the computational setting, the equations can be discreti ed for ef?cient solution on a computer, leading to valuable tools for simulation of natural and man-made processes. Numerical so- tion of PDE-based mathematical models has been an important research topic over centuries, and will remain so for centuries to come. In the context of computer-based simulations, the quality of the computed results is directly connected to the model’s complexity and the number of data points used for the computations. Therefore, computational scientists tend to ?ll even the largest and most powerful computers they can get access to, either by increasing the si e of the data sets, or by introducing new model terms that make the simulations more realistic, or a combination of both. Today, many important simulation problems can not be solved by one single computer, but calls for parallel computing.
Design and Implementation of Parallel Multigrid Algorithms
Title | Design and Implementation of Parallel Multigrid Algorithms PDF eBook |
Author | Research Institute for Advanced Computer Science (U.S.) |
Publisher | |
Pages | 26 |
Release | 1987 |
Genre | |
ISBN |
Parallel Processing for Scientific Computing
Title | Parallel Processing for Scientific Computing PDF eBook |
Author | Michael A. Heroux |
Publisher | SIAM |
Pages | 421 |
Release | 2006-01-01 |
Genre | Computers |
ISBN | 9780898718133 |
Parallel processing has been an enabling technology in scientific computing for more than 20 years. This book is the first in-depth discussion of parallel computing in 10 years; it reflects the mix of topics that mathematicians, computer scientists, and computational scientists focus on to make parallel processing effective for scientific problems. Presently, the impact of parallel processing on scientific computing varies greatly across disciplines, but it plays a vital role in most problem domains and is absolutely essential in many of them. Parallel Processing for Scientific Computing is divided into four parts: The first concerns performance modeling, analysis, and optimization; the second focuses on parallel algorithms and software for an array of problems common to many modeling and simulation applications; the third emphasizes tools and environments that can ease and enhance the process of application development; and the fourth provides a sampling of applications that require parallel computing for scaling to solve larger and realistic models that can advance science and engineering.
A Multigrid Tutorial
Title | A Multigrid Tutorial PDF eBook |
Author | William L. Briggs |
Publisher | SIAM |
Pages | 318 |
Release | 2000-07-01 |
Genre | Mathematics |
ISBN | 9780898714623 |
Mathematics of Computing -- Numerical Analysis.
Parallel Processing for Scientific Computing
Title | Parallel Processing for Scientific Computing PDF eBook |
Author | Michael A. Heroux |
Publisher | SIAM |
Pages | 407 |
Release | 2006-01-01 |
Genre | Computers |
ISBN | 0898716195 |
Scientific computing has often been called the third approach to scientific discovery, emerging as a peer to experimentation and theory. Historically, the synergy between experimentation and theory has been well understood: experiments give insight into possible theories, theories inspire experiments, experiments reinforce or invalidate theories, and so on. As scientific computing has evolved to produce results that meet or exceed the quality of experimental and theoretical results, it has become indispensable.Parallel processing has been an enabling technology in scientific computing for more than 20 years. This book is the first in-depth discussion of parallel computing in 10 years; it reflects the mix of topics that mathematicians, computer scientists, and computational scientists focus on to make parallel processing effective for scientific problems. Presently, the impact of parallel processing on scientific computing varies greatly across disciplines, but it plays a vital role in most problem domains and is absolutely essential in many of them. Parallel Processing for Scientific Computing is divided into four parts: The first concerns performance modeling, analysis, and optimization; the second focuses on parallel algorithms and software for an array of problems common to many modeling and simulation applications; the third emphasizes tools and environments that can ease and enhance the process of application development; and the fourth provides a sampling of applications that require parallel computing for scaling to solve larger and realistic models that can advance science and engineering. This edited volume serves as an up-to-date reference for researchers and application developers on the state of the art in scientific computing. It also serves as an excellent overview and introduction, especially for graduate and senior-level undergraduate students interested in computational modeling and simulation and related computer science and applied mathematics aspects.Contents List of Figures; List of Tables; Preface; Chapter 1: Frontiers of Scientific Computing: An Overview; Part I: Performance Modeling, Analysis and Optimization. Chapter 2: Performance Analysis: From Art to Science; Chapter 3: Approaches to Architecture-Aware Parallel Scientific Computation; Chapter 4: Achieving High Performance on the BlueGene/L Supercomputer; Chapter 5: Performance Evaluation and Modeling of Ultra-Scale Systems; Part II: Parallel Algorithms and Enabling Technologies. Chapter 6: Partitioning and Load Balancing; Chapter 7: Combinatorial Parallel and Scientific Computing; Chapter 8: Parallel Adaptive Mesh Refinement; Chapter 9: Parallel Sparse Solvers, Preconditioners, and Their Applications; Chapter 10: A Survey of Parallelization Techniques for Multigrid Solvers; Chapter 11: Fault Tolerance in Large-Scale Scientific Computing; Part III: Tools and Frameworks for Parallel Applications. Chapter 12: Parallel Tools and Environments: A Survey; Chapter 13: Parallel Linear Algebra Software; Chapter 14: High-Performance Component Software Systems; Chapter 15: Integrating Component-Based Scientific Computing Software; Part IV: Applications of Parallel Computing. Chapter 16: Parallel Algorithms for PDE-Constrained Optimization; Chapter 17: Massively Parallel Mixed-Integer Programming; Chapter 18: Parallel Methods and Software for Multicomponent Simulations; Chapter 19: Parallel Computational Biology; Chapter 20: Opportunities and Challenges for Parallel Computing in Science and Engineering; Index.
multigrid methods
Title | multigrid methods PDF eBook |
Author | Stephen F. Mccormick |
Publisher | CRC Press |
Pages | 668 |
Release | 2020-08-12 |
Genre | Mathematics |
ISBN | 1000147223 |
This book is a collection of research papers on a wide variety of multigrid topics, including applications, computation and theory. It represents proceedings of the Third Copper Mountain Conference on Multigrid Methods, which was held at Copper Mountain, Colorado.