Analysis and Optimization for Robust Millimeter-Wave Communications

Analysis and Optimization for Robust Millimeter-Wave Communications
Title Analysis and Optimization for Robust Millimeter-Wave Communications PDF eBook
Author Cristian Tatino
Publisher Linköping University Electronic Press
Pages 53
Release 2021-01-13
Genre Electronic books
ISBN 917929734X

Download Analysis and Optimization for Robust Millimeter-Wave Communications Book in PDF, Epub and Kindle

Spectrum scarcity is a longstanding problem in mobile telecommunications networks. Specifically, accommodating the ever-growing data rate and communications demand in the extensively used spectrum between 800 MHz and 6 GHz is becoming more challenging. For this reason, in the last years, communications in the millimeterwave (mm-wave) frequency range (30-300 GHz) have attracted the interest of many researchers, who consider mm-wave communications a key enabler for upcoming generations of mobile communications, i.e., 5G and 6G. However, the signal propagation in the mm-wave frequency range is subject to more challenging conditions. High path loss and penetration loss may lead to short-range communications and frequent transmission interruptions when the signal path between the transmitter and the receiver is blocked. In this dissertation, we analyze and optimize techniques that enhance the robustness and reliability of mm-wave communications. In the first part, we focus on approaches that allow user equipment (UE) to establish and maintain connections with multiple access points (APs) or relays, i.e., multi-connectivity (MC) and relaying techniques, to increase link failure robustness. In such scenarios, an inefficient link scheduling, i.e., over or under-provisioning of connections, can lead to either high interference and energy consumption or unsatisfied user’s quality of service (QoS) requirements. In the first paper, we propose a novel link scheduling algorithm for network throughput maximization with constrained resources and quantify the potential gain of MC. As a complementary approach, in the second paper, we solve the problem of minimizing allocated resources while satisfying users’ QoS requirements for mm-wave MC scenarios. To deal with the channel uncertainty and abrupt blockages, we propose a learning-based solution, of which the results highlight the tradeoff between reliability and allocated resource. In the third paper, we perform throughput and delay analysis of a multi-user mm-wave wireless network assisted by a relay. We show the benefits of cooperative networking and the effects of directional communications on relay-aided mm-wave communications. These, as highlighted by the results, are characterized by a tradeoff between throughput and delay and are highly affected by the beam alignment duration and transmission strategy (directional or broadcast). The second part of this dissertation focuses on problems related to mm-wave communications in industrial scenarios, where robots and new industrial applications require high data rates, and stringent reliability and latency requirements. In the fourth paper, we consider a multi-AP mm-wave wireless network covering an industrial plant where multiple moving robots need to be connected. We show how the joint optimization of robots’ paths and the robot-AP associations can increase mm-wave robustness by decreasing the number of handovers and avoiding coverage holes. Finally, the fifth paper considers scenarios where robot-AP communications are assisted by an intelligent reflective surface (IRS). We show that the joint optimization of beamforming and trajectory of the robot can minimize the motion energy consumption while satisfying time and communication QoS constraints. Moreover, the proposed solution exploits a radio map to prevent collisions with obstacles and to increase mm-wave communication robustness by avoiding poorly covered areas.

Millimeter-Wave (mmWave) Communications

Millimeter-Wave (mmWave) Communications
Title Millimeter-Wave (mmWave) Communications PDF eBook
Author Manuel García Sanchez
Publisher MDPI
Pages 188
Release 2020-03-25
Genre Technology & Engineering
ISBN 3039284304

Download Millimeter-Wave (mmWave) Communications Book in PDF, Epub and Kindle

The millimeter-wave frequency band (30–300 GHz) is considered a potential candidate to host very high data rate communications. First used for high capacity radio links and then for broadband indoor wireless networks, the interest in this frequency band has increased as it is proposed to accommodate future 5G mobile communication systems. The large bandwidth available will enable a number of new uses for 5G. In addition, due to the large propagation attenuation, this frequency band may provide some additional advantages regarding frequency reuse and communication security. However, a number of issues have to be addressed to make mm-wave communications viable. This book collects a number of contributions that present solutions to these challenges.

Towards Robust and Reliable Communication for Millimeter Wave Networks

Towards Robust and Reliable Communication for Millimeter Wave Networks
Title Towards Robust and Reliable Communication for Millimeter Wave Networks PDF eBook
Author Masoud Zarifneshat
Publisher
Pages 0
Release 2022
Genre Electronic dissertations
ISBN

Download Towards Robust and Reliable Communication for Millimeter Wave Networks Book in PDF, Epub and Kindle

The future generations of wireless networks benefit significantly from millimeter wave technology (mmW) with frequencies ranging from about 30 GHz to 300 GHz. Specifically, the fifth generation of wireless networks has already implemented the mmW technology and the capacity requirements defined in 6G will also benefit from the mmW spectrum. Despite the attractions of the mmW technology, the mmW spectrum has some inherent propagation properties that introduce challenges. The first is that free space pathloss in mmW is more severe than that in the sub 6 GHz band. To make the mmW signal travel farther, communication systems need to use phased array antennas to concentrate the signal power to a limited direction in space at each given time. Directional communication can incur high overhead on the system because it needs to probe the space for finding signal paths. To have efficient communication in the mmW spectrum, the transmitter and the receiver should align their beams on strong signal paths which is a high overhead task. The second is a low diffraction of the mmW spectrum. The low diffraction causes almost any object including the human body to easily block the mmW signal degrading the mmW link quality. Avoiding and recovering from the blockage in the mmW communications, especially in dynamic environments, is particularly challenging because of the fast changes of the mmW channel. Due to the unique characteristics of the mmW propagation, the traditional user association methods perform poorly in the mmW spectrum. Therefore, we propose user association methods that consider the inherent propagation characteristics of the mmW signal. We first propose a method that collects the history of blockage incidents throughout the network and exploits the historical blockage incidents to associate user equipment to the base station with lower blockage possibility. The simulation results show that our proposed algorithm performs better in terms of improving the quality of the links and blockage rate in the network. User association based only on one objective may deteriorate other objectives. Therefore, we formulate a biobjective optimization problem to consider two objectives of load balance and blockage possibility in the network. We conduct Lagrangian dual analysis to decrease time complexity. The results show that our solution to the biobjective optimization problem has a better outcome compared to optimizing each objective alone. After we investigate the user association problem, we further look into the problem of maintaining a robust link between a transmitter and a receiver. The directional propagation of the mmW signal creates the opportunity to exploit multipath for a robust link. The main reasons for the link quality degradation are blockage and link movement. We devise a learning-based prediction framework to classify link blockage and link movement efficiently and quickly using diffraction values for taking appropriate mitigating actions. The simulations show that the prediction framework can predict blockage with close to 90% accuracy. The prediction framework will eliminate the need for time-consuming methods to discriminate between link movement and link blockage. After detecting the reason for the link degradation, the system needs to do the beam alignment on the updated mmW signal paths. The beam alignment on the signal paths is a high overhead task. We propose using signaling in another frequency band to discover the paths surrounding a receiver working in the mmW spectrum. In this way, the receiver does not have to do an expensive beam scan in the mmW band. Our experiments with off-the-shelf devices show that we can use a non-mmW frequency band's paths to align the beams in mmW frequency.In this dissertation, we provide solutions to the fundamental problems in mmW communication. We propose a user association method that is designed for mmW networks considering challenges of mmW signal. A closed-form solution for a biobjective optimization problem to optimize both blockage and load balance of the network is also provided. Moreover, we show that we can efficiently use the out-of-band signal to exploit multipath created in mmW communication. The future research direction includes investigating the methods proposed in this dissertation to solve some of the classic problems in the wireless networks that exist in the mmW spectrum.

Millimeter Wave Link Configuration Robust to Radio Frequency Impairments

Millimeter Wave Link Configuration Robust to Radio Frequency Impairments
Title Millimeter Wave Link Configuration Robust to Radio Frequency Impairments PDF eBook
Author Nitin Jonathan Myers
Publisher
Pages 348
Release 2020
Genre
ISBN

Download Millimeter Wave Link Configuration Robust to Radio Frequency Impairments Book in PDF, Epub and Kindle

Millimeter wave (mmWave) bands offer several gigahertz of bandwidth that can support high data rate applications. To efficiently use the spectrum at mmWave frequencies, the wireless link between the transmitting and receiving radios must be configured properly. The link configuration problem at mmWave, however, is challenging due to the use of large antenna arrays and radio frequency (RF) impairments that are less severe in common lower frequency systems. Some of these impairments include the low resolution of RF phase shifters, carrier frequency offset, and the misfocus effect in near field systems with large arrays. An important characteristic of mmWave multiple-input multiple-output (MIMO) channels is sparsity. The sparse nature of such channels has allowed the use of compressed sensing (CS) for fast link configuration through channel estimation or beam alignment. CS techniques usually involve random sensing matrices to acquire a compressed channel representation and an optimization algorithm to estimate the sparse channel. Unfortunately, common random CS matrices result in poor link configuration under RF impairments. In the first part of this dissertation, we construct a new class of CS matrices that achieve robustness to the low resolution of RF phase shifters and the carrier frequency offset. To aid our construction, we propose a framework called FALP and develop an algorithm called Swift-Link within this framework. Swift-Link achieves better beam alignment than standard CS-based solutions at a reduced computational complexity. In the second part of this dissertation, we investigate the misfocus effect in near field beamforming. The beams in a near field communication scenario can focus RF signals in a spatial region called the focal point. The focal point, however, changes with the frequency of operation in a wideband phased array that uses a center frequency-based beamformer. This effect called misfocus, reduces the effective operating bandwidth of the near field system. To mitigate the misfocus effect, we propose a technique called InFocus that constructs beams which are well suited for massive wideband phased arrays. InFocus enables massive wideband phased array-based radios to achieve a higher data rate than comparable beamforming solutions

Soft Computing Methods for Microwave and Millimeter-Wave Design Problems

Soft Computing Methods for Microwave and Millimeter-Wave Design Problems
Title Soft Computing Methods for Microwave and Millimeter-Wave Design Problems PDF eBook
Author Narendra Chauhan
Publisher Springer Science & Business Media
Pages 119
Release 2012-02-09
Genre Computers
ISBN 3642255620

Download Soft Computing Methods for Microwave and Millimeter-Wave Design Problems Book in PDF, Epub and Kindle

The growing commercial market of Microwave/ Millimeter wave industry over the past decade has led to the explosion of interests and opportunities for the design and development of microwave components.The design of most microwave components requires the use of commercially available electromagnetic (EM) simulation tools for their analysis. In the design process, the simulations are carried out by varying the design parameters until the desired response is obtained. The optimization of design parameters by manual searching is a cumbersome and time consuming process. Soft computing methods such as Genetic Algorithm (GA), Artificial Neural Network (ANN) and Fuzzy Logic (FL) have been widely used by EM researchers for microwave design since last decade. The aim of these methods is to tolerate imprecision, uncertainty, and approximation to achieve robust and low cost solution in a small time frame. Modeling and optimization are essential parts and powerful tools for the microwave/millimeter wave design. This book deals with the development and use of soft computing methods for tackling challenging design problems in the microwave/millimeter wave domain. The aim in the development of these methods is to obtain the design in small time frame while improving the accuracy of the design for a wide range of applications. To achieve this goal, a few diverse design problems of microwave field, representing varied challenges in the design, such as different microstrip antennas, microwave filters, a microstrip-via and also some critical high power components such as nonlinear tapers and RF-windows are considered as case-study design problems. Different design methodologies are developed for these applications. The presents soft computing methods, their review for microwave/millimeter wave design problems and specific case-study problems to infuse better insight and understanding of the subject.

Robust Optimization of Private Communication in Multi-antenna Systems

Robust Optimization of Private Communication in Multi-antenna Systems
Title Robust Optimization of Private Communication in Multi-antenna Systems PDF eBook
Author Anne Wolf
Publisher
Pages 0
Release 2015
Genre
ISBN

Download Robust Optimization of Private Communication in Multi-antenna Systems Book in PDF, Epub and Kindle

Millimeter-Wave (mmWave) Communications

Millimeter-Wave (mmWave) Communications
Title Millimeter-Wave (mmWave) Communications PDF eBook
Author Manuel García Sanchez
Publisher
Pages 188
Release 2020
Genre Engineering (General). Civil engineering (General)
ISBN 9783039284313

Download Millimeter-Wave (mmWave) Communications Book in PDF, Epub and Kindle

The millimeter-wave frequency band (30-300 GHz) is considered a potential candidate to host very high data rate communications. First used for high capacity radio links and then for broadband indoor wireless networks, the interest in this frequency band has increased as it is proposed to accommodate future 5G mobile communication systems. The large bandwidth available will enable a number of new uses for 5G. In addition, due to the large propagation attenuation, this frequency band may provide some additional advantages regarding frequency reuse and communication security. However, a number of issues have to be addressed to make mm-wave communications viable. This book collects a number of contributions that present solutions to these challenges.