Analysis and Numerics of Partial Differential Equations

Analysis and Numerics of Partial Differential Equations
Title Analysis and Numerics of Partial Differential Equations PDF eBook
Author Franco Brezzi
Publisher Springer Science & Business Media
Pages 394
Release 2012-12-22
Genre Mathematics
ISBN 8847025923

Download Analysis and Numerics of Partial Differential Equations Book in PDF, Epub and Kindle

This volume is a selection of contributions offered by friends, collaborators, past students in memory of Enrico Magenes. The first part gives a wide historical perspective of Magenes' work in his 50-year mathematical career; the second part contains original research papers, and shows how ideas, methods, and techniques introduced by Magenes and his collaborators still have an impact on the current research in Mathematics.

Analytic Methods for Partial Differential Equations

Analytic Methods for Partial Differential Equations
Title Analytic Methods for Partial Differential Equations PDF eBook
Author G. Evans
Publisher Springer Science & Business Media
Pages 308
Release 2012-12-06
Genre Mathematics
ISBN 1447103793

Download Analytic Methods for Partial Differential Equations Book in PDF, Epub and Kindle

This is the practical introduction to the analytical approach taken in Volume 2. Based upon courses in partial differential equations over the last two decades, the text covers the classic canonical equations, with the method of separation of variables introduced at an early stage. The characteristic method for first order equations acts as an introduction to the classification of second order quasi-linear problems by characteristics. Attention then moves to different co-ordinate systems, primarily those with cylindrical or spherical symmetry. Hence a discussion of special functions arises quite naturally, and in each case the major properties are derived. The next section deals with the use of integral transforms and extensive methods for inverting them, and concludes with links to the use of Fourier series.

Numerical Partial Differential Equations: Finite Difference Methods

Numerical Partial Differential Equations: Finite Difference Methods
Title Numerical Partial Differential Equations: Finite Difference Methods PDF eBook
Author J.W. Thomas
Publisher Springer Science & Business Media
Pages 451
Release 2013-12-01
Genre Mathematics
ISBN 1489972781

Download Numerical Partial Differential Equations: Finite Difference Methods Book in PDF, Epub and Kindle

What makes this book stand out from the competition is that it is more computational. Once done with both volumes, readers will have the tools to attack a wider variety of problems than those worked out in the competitors' books. The author stresses the use of technology throughout the text, allowing students to utilize it as much as possible.

Numerical Approximation of Partial Differential Equations

Numerical Approximation of Partial Differential Equations
Title Numerical Approximation of Partial Differential Equations PDF eBook
Author Sören Bartels
Publisher Springer
Pages 541
Release 2016-06-02
Genre Mathematics
ISBN 3319323547

Download Numerical Approximation of Partial Differential Equations Book in PDF, Epub and Kindle

Finite element methods for approximating partial differential equations have reached a high degree of maturity, and are an indispensible tool in science and technology. This textbook aims at providing a thorough introduction to the construction, analysis, and implementation of finite element methods for model problems arising in continuum mechanics. The first part of the book discusses elementary properties of linear partial differential equations along with their basic numerical approximation, the functional-analytical framework for rigorously establishing existence of solutions, and the construction and analysis of basic finite element methods. The second part is devoted to the optimal adaptive approximation of singularities and the fast iterative solution of linear systems of equations arising from finite element discretizations. In the third part, the mathematical framework for analyzing and discretizing saddle-point problems is formulated, corresponding finte element methods are analyzed, and particular applications including incompressible elasticity, thin elastic objects, electromagnetism, and fluid mechanics are addressed. The book includes theoretical problems and practical projects for all chapters, and an introduction to the implementation of finite element methods.

Numerical Methods for Nonlinear Partial Differential Equations

Numerical Methods for Nonlinear Partial Differential Equations
Title Numerical Methods for Nonlinear Partial Differential Equations PDF eBook
Author Sören Bartels
Publisher Springer
Pages 394
Release 2015-01-19
Genre Mathematics
ISBN 3319137972

Download Numerical Methods for Nonlinear Partial Differential Equations Book in PDF, Epub and Kindle

The description of many interesting phenomena in science and engineering leads to infinite-dimensional minimization or evolution problems that define nonlinear partial differential equations. While the development and analysis of numerical methods for linear partial differential equations is nearly complete, only few results are available in the case of nonlinear equations. This monograph devises numerical methods for nonlinear model problems arising in the mathematical description of phase transitions, large bending problems, image processing, and inelastic material behavior. For each of these problems the underlying mathematical model is discussed, the essential analytical properties are explained, and the proposed numerical method is rigorously analyzed. The practicality of the algorithms is illustrated by means of short implementations.

Partial Differential Equations with Numerical Methods

Partial Differential Equations with Numerical Methods
Title Partial Differential Equations with Numerical Methods PDF eBook
Author Stig Larsson
Publisher Springer Science & Business Media
Pages 263
Release 2008-12-05
Genre Mathematics
ISBN 3540887059

Download Partial Differential Equations with Numerical Methods Book in PDF, Epub and Kindle

The main theme is the integration of the theory of linear PDE and the theory of finite difference and finite element methods. For each type of PDE, elliptic, parabolic, and hyperbolic, the text contains one chapter on the mathematical theory of the differential equation, followed by one chapter on finite difference methods and one on finite element methods. The chapters on elliptic equations are preceded by a chapter on the two-point boundary value problem for ordinary differential equations. Similarly, the chapters on time-dependent problems are preceded by a chapter on the initial-value problem for ordinary differential equations. There is also one chapter on the elliptic eigenvalue problem and eigenfunction expansion. The presentation does not presume a deep knowledge of mathematical and functional analysis. The required background on linear functional analysis and Sobolev spaces is reviewed in an appendix. The book is suitable for advanced undergraduate and beginning graduate students of applied mathematics and engineering.

Numerical Approximation of Partial Differential Equations

Numerical Approximation of Partial Differential Equations
Title Numerical Approximation of Partial Differential Equations PDF eBook
Author Alfio Quarteroni
Publisher Springer Science & Business Media
Pages 551
Release 2009-02-11
Genre Mathematics
ISBN 3540852689

Download Numerical Approximation of Partial Differential Equations Book in PDF, Epub and Kindle

Everything is more simple than one thinks but at the same time more complex than one can understand Johann Wolfgang von Goethe To reach the point that is unknown to you, you must take the road that is unknown to you St. John of the Cross This is a book on the numerical approximation ofpartial differential equations (PDEs). Its scope is to provide a thorough illustration of numerical methods (especially those stemming from the variational formulation of PDEs), carry out their stability and convergence analysis, derive error bounds, and discuss the algorithmic aspects relative to their implementation. A sound balancing of theoretical analysis, description of algorithms and discussion of applications is our primary concern. Many kinds of problems are addressed: linear and nonlinear, steady and time-dependent, having either smooth or non-smooth solutions. Besides model equations, we consider a number of (initial-) boundary value problems of interest in several fields of applications. Part I is devoted to the description and analysis of general numerical methods for the discretization of partial differential equations. A comprehensive theory of Galerkin methods and its variants (Petrov Galerkin and generalized Galerkin), as wellas ofcollocationmethods, is devel oped for the spatial discretization. This theory is then specified to two numer ical subspace realizations of remarkable interest: the finite element method (conforming, non-conforming, mixed, hybrid) and the spectral method (Leg endre and Chebyshev expansion).