Analysis and Design of Ultra-Thin-Body Ferroelectric Field Effect Transistor Non-volatile Memory Considering the Variability of Ferroelectric

Analysis and Design of Ultra-Thin-Body Ferroelectric Field Effect Transistor Non-volatile Memory Considering the Variability of Ferroelectric
Title Analysis and Design of Ultra-Thin-Body Ferroelectric Field Effect Transistor Non-volatile Memory Considering the Variability of Ferroelectric PDF eBook
Author
Publisher
Pages
Release 2020
Genre
ISBN

Download Analysis and Design of Ultra-Thin-Body Ferroelectric Field Effect Transistor Non-volatile Memory Considering the Variability of Ferroelectric Book in PDF, Epub and Kindle

Ferroelectric-Gate Field Effect Transistor Memories

Ferroelectric-Gate Field Effect Transistor Memories
Title Ferroelectric-Gate Field Effect Transistor Memories PDF eBook
Author Byung-Eun Park
Publisher Springer
Pages 350
Release 2016-09-02
Genre Technology & Engineering
ISBN 940240841X

Download Ferroelectric-Gate Field Effect Transistor Memories Book in PDF, Epub and Kindle

This book provides comprehensive coverage of the materials characteristics, process technologies, and device operations for memory field-effect transistors employing inorganic or organic ferroelectric thin films. This transistor-type ferroelectric memory has interesting fundamental device physics and potentially large industrial impact. Among the various applications of ferroelectric thin films, the development of nonvolatile ferroelectric random access memory (FeRAM) has progressed most actively since the late 1980s and has achieved modest mass production levels for specific applications since 1995. There are two types of memory cells in ferroelectric nonvolatile memories. One is the capacitor-type FeRAM and the other is the field-effect transistor (FET)-type FeRAM. Although the FET-type FeRAM claims ultimate scalability and nondestructive readout characteristics, the capacitor-type FeRAMs have been the main interest for the major semiconductor memory companies, because the ferroelectric FET has fatal handicaps of cross-talk for random accessibility and short retention time. This book aims to provide readers with the development history, technical issues, fabrication methodologies, and promising applications of FET-type ferroelectric memory devices, presenting a comprehensive review of past, present, and future technologies. The topics discussed will lead to further advances in large-area electronics implemented on glass or plastic substrates as well as in conventional Si electronics. The book is composed of chapters written by leading researchers in ferroelectric materials and related device technologies, including oxide and organic ferroelectric thin films.

Ferroelectric Field Effect Transistor Non-volatile Memory: Cell Evaluation Considering Write Disturb and A New Approach For Logic-In-Memory

Ferroelectric Field Effect Transistor Non-volatile Memory: Cell Evaluation Considering Write Disturb and A New Approach For Logic-In-Memory
Title Ferroelectric Field Effect Transistor Non-volatile Memory: Cell Evaluation Considering Write Disturb and A New Approach For Logic-In-Memory PDF eBook
Author
Publisher
Pages 0
Release 2021
Genre
ISBN

Download Ferroelectric Field Effect Transistor Non-volatile Memory: Cell Evaluation Considering Write Disturb and A New Approach For Logic-In-Memory Book in PDF, Epub and Kindle

Electrical Characterisation of Ferroelectric Field Effect Transistors based on Ferroelectric HfO2 Thin Films

Electrical Characterisation of Ferroelectric Field Effect Transistors based on Ferroelectric HfO2 Thin Films
Title Electrical Characterisation of Ferroelectric Field Effect Transistors based on Ferroelectric HfO2 Thin Films PDF eBook
Author Ekaterina Yurchuk
Publisher Logos Verlag Berlin GmbH
Pages 184
Release 2015-06-30
Genre Science
ISBN 3832540032

Download Electrical Characterisation of Ferroelectric Field Effect Transistors based on Ferroelectric HfO2 Thin Films Book in PDF, Epub and Kindle

Ferroelectric field effect transistor (FeFET) memories based on a new type of ferroelectric material (silicon doped hafnium oxide) were studied within the scope of the present work. Utilisation of silicon doped hafnium oxide (Si:HfO2 thin films instead of conventional perovskite ferroelectrics as a functional layer in FeFETs provides compatibility to the CMOS process as well as improved device scalability. The influence of different process parameters on the properties of Si:HfO2 thin films was analysed in order to gain better insight into the occurrence of ferroelectricity in this system. A subsequent examination of the potential of this material as well as its possible limitations with the respect to the application in non-volatile memories followed. The Si:HfO2-based ferroelectric transistors that were fully integrated into the state-of-the-art high-k metal gate CMOS technology were studied in this work for the first time. The memory performance of these devices scaled down to 28 nm gate length was investigated. Special attention was paid to the charge trapping phenomenon shown to significantly affect the device behaviour.

Advanced Field-Effect Transistors

Advanced Field-Effect Transistors
Title Advanced Field-Effect Transistors PDF eBook
Author Dharmendra Singh Yadav
Publisher CRC Press
Pages 306
Release 2023-12-22
Genre Technology & Engineering
ISBN 1003816266

Download Advanced Field-Effect Transistors Book in PDF, Epub and Kindle

Advanced Field-Effect Transistors: Theory and Applications offers a fresh perspective on the design and analysis of advanced field-effect transistor (FET) devices and their applications. The text emphasizes both fundamental and new paradigms that are essential for upcoming advancement in the field of transistors beyond complementary metal–oxide–semiconductors (CMOS). This book uses lucid, intuitive language to gradually increase the comprehension of readers about the key concepts of FETs, including their theory and applications. In order to improve readers’ learning opportunities, Advanced Field-Effect Transistors: Theory and Applications presents a wide range of crucial topics: Design and challenges in tunneling FETs Various modeling approaches for FETs Study of organic thin-film transistors Biosensing applications of FETs Implementation of memory and logic gates with FETs The advent of low-power semiconductor devices and related implications for upcoming technology nodes provide valuable insight into low-power devices and their applicability in wireless, biosensing, and circuit aspects. As a result, researchers are constantly looking for new semiconductor devices to meet consumer demand. This book gives more details about all aspects of the low-power technology, including ongoing and prospective circumstances with fundamentals of FET devices as well as sophisticated low-power applications.

Variability Analysis of Negative-Capacitance FETs Considering Ferroelectric Polymorphic Phase Distribution and Optimization of Ferroelectric FET Analog Memory

Variability Analysis of Negative-Capacitance FETs Considering Ferroelectric Polymorphic Phase Distribution and Optimization of Ferroelectric FET Analog Memory
Title Variability Analysis of Negative-Capacitance FETs Considering Ferroelectric Polymorphic Phase Distribution and Optimization of Ferroelectric FET Analog Memory PDF eBook
Author
Publisher
Pages 0
Release 2021
Genre
ISBN

Download Variability Analysis of Negative-Capacitance FETs Considering Ferroelectric Polymorphic Phase Distribution and Optimization of Ferroelectric FET Analog Memory Book in PDF, Epub and Kindle

Design and Simulation of Short Channel Si:HfO2 Ferroelectric Field Effect Transistor (FeFET)

Design and Simulation of Short Channel Si:HfO2 Ferroelectric Field Effect Transistor (FeFET)
Title Design and Simulation of Short Channel Si:HfO2 Ferroelectric Field Effect Transistor (FeFET) PDF eBook
Author Idris H. Smaili
Publisher
Pages 130
Release 2014
Genre Ferroelectric devices
ISBN

Download Design and Simulation of Short Channel Si:HfO2 Ferroelectric Field Effect Transistor (FeFET) Book in PDF, Epub and Kindle

"Non-volatile memories using ferroelectric capacitors, known as Ferroelectric Random Access Memory (FRAM) have been studied for many years, but they suffer from loss of data during read out process. Ferroelectric Field Effect Transistors (FeFETs), which are based on ferroelectric gate oxide, have been of recent interest for non-volatile memory applications. The FeFETs utilize the polarization of the ferroelectric layer incorporated into the transistor gate stack to control the channel conductivity. Therefore, in FeFET devices, the read out process is non-destructive because it is only processed by measuring the resistivity in the channel region. The drain current-gate voltage (ID-VG) characteristics of FeFETs exhibit a voltage shift due to polarization hysteresis known as the 'memory window', an important figure of merit of a FeFET that provides a window for the read voltage. A dielectric layer between semiconductor layer and the ferroelectric is required to reduce charge injection effect, and to compensate lattice mismatch between the ferroelectric and the semiconductor. In addition, a non-ferroelectric interfacial layer may form between the semiconductor and the ferroelectric layer. However, this dielectric layer causes a voltage drop since the system becomes equivalent to two serial capacitors. It also causes an electric field that opposes the polarization. Using a high permittivity material such as HfO2 reduces the voltage drop and the effect of depolarization. To date, the majority of the work involving FeFETs has been based on conventional ferroelectric materials such as Lead Zirconate Titanate (PZT) and Strontium Bismuth Tantalate (SBT). These materials are not compatible with standard IC processing and furthermore scaling thicknesses in PZT and SBT result in loss of polarization characteristics. Recently, ferroelectricity has been reported in doped hafnium oxide thin films with dopants such as Si, Al, and Gd. Particularly, silicon doped hafnium oxide (Si:HfO2) has shown promise. In this material, the remnant polarization considerably increases by decreasing the layer thickness. The lower permittivity of Si:HfO2 compared to that of PZT and SBT, allows to employ thinner films that reduce fringing effects. This study focuses on employing Si:HfO2 in short channel FeFETs. The study has two major objectives. First, to show that short channel FeFETs can be accomplished with large memory window. Second, to demonstrate the role of bulk layer thickness and permittivity on FeFET performance. N-channel metal oxide semiconductor FET (N-MOSFET) with printed channel length of 26 nm has been designed with Si:HfO2 as the ferroelectric layer, and TiN as the gate electrode. The effects of buffer layer thickness and permittivity and ferroelectric layer thickness on the memory window have been explored using Silvaco Atlas software that employs ferroelectric FET device physics developed by Miller et al. Polarization characteristics reported for Si:HfO2 have been incorporated in this model. The simulations performed in this study have shown that using Si:HfO2 as a ferroelectric material makes it possible to accomplish short channel FeFETs with good performance even without using buffer layers. This means it is possible to minimize depolarization effects. Using Si:HfO2 as a ferroelectric layer makes it possible to accomplish highly scaled and ultra-low-power FeFETs."--Abstract.