Decision Making Under Uncertainty

Decision Making Under Uncertainty
Title Decision Making Under Uncertainty PDF eBook
Author Mykel J. Kochenderfer
Publisher MIT Press
Pages 350
Release 2015-07-24
Genre Computers
ISBN 0262331713

Download Decision Making Under Uncertainty Book in PDF, Epub and Kindle

An introduction to decision making under uncertainty from a computational perspective, covering both theory and applications ranging from speech recognition to airborne collision avoidance. Many important problems involve decision making under uncertainty—that is, choosing actions based on often imperfect observations, with unknown outcomes. Designers of automated decision support systems must take into account the various sources of uncertainty while balancing the multiple objectives of the system. This book provides an introduction to the challenges of decision making under uncertainty from a computational perspective. It presents both the theory behind decision making models and algorithms and a collection of example applications that range from speech recognition to aircraft collision avoidance. Focusing on two methods for designing decision agents, planning and reinforcement learning, the book covers probabilistic models, introducing Bayesian networks as a graphical model that captures probabilistic relationships between variables; utility theory as a framework for understanding optimal decision making under uncertainty; Markov decision processes as a method for modeling sequential problems; model uncertainty; state uncertainty; and cooperative decision making involving multiple interacting agents. A series of applications shows how the theoretical concepts can be applied to systems for attribute-based person search, speech applications, collision avoidance, and unmanned aircraft persistent surveillance. Decision Making Under Uncertainty unifies research from different communities using consistent notation, and is accessible to students and researchers across engineering disciplines who have some prior exposure to probability theory and calculus. It can be used as a text for advanced undergraduate and graduate students in fields including computer science, aerospace and electrical engineering, and management science. It will also be a valuable professional reference for researchers in a variety of disciplines.

Analysis and Decision Making in Uncertain Systems

Analysis and Decision Making in Uncertain Systems
Title Analysis and Decision Making in Uncertain Systems PDF eBook
Author Zdzislaw Bubnicki
Publisher Springer Science & Business Media
Pages 377
Release 2013-03-14
Genre Technology & Engineering
ISBN 1447137604

Download Analysis and Decision Making in Uncertain Systems Book in PDF, Epub and Kindle

A unified and systematic description of analysis and decision problems within a wide class of uncertain systems, described by traditional mathematical methods and by relational knowledge representations. Prof. Bubnicki takes a unique approach to stability and stabilization of uncertain systems.

Decision Making under Deep Uncertainty

Decision Making under Deep Uncertainty
Title Decision Making under Deep Uncertainty PDF eBook
Author Vincent A. W. J. Marchau
Publisher Springer
Pages 408
Release 2019-04-04
Genre Business & Economics
ISBN 3030052524

Download Decision Making under Deep Uncertainty Book in PDF, Epub and Kindle

This open access book focuses on both the theory and practice associated with the tools and approaches for decisionmaking in the face of deep uncertainty. It explores approaches and tools supporting the design of strategic plans under deep uncertainty, and their testing in the real world, including barriers and enablers for their use in practice. The book broadens traditional approaches and tools to include the analysis of actors and networks related to the problem at hand. It also shows how lessons learned in the application process can be used to improve the approaches and tools used in the design process. The book offers guidance in identifying and applying appropriate approaches and tools to design plans, as well as advice on implementing these plans in the real world. For decisionmakers and practitioners, the book includes realistic examples and practical guidelines that should help them understand what decisionmaking under deep uncertainty is and how it may be of assistance to them. Decision Making under Deep Uncertainty: From Theory to Practice is divided into four parts. Part I presents five approaches for designing strategic plans under deep uncertainty: Robust Decision Making, Dynamic Adaptive Planning, Dynamic Adaptive Policy Pathways, Info-Gap Decision Theory, and Engineering Options Analysis. Each approach is worked out in terms of its theoretical foundations, methodological steps to follow when using the approach, latest methodological insights, and challenges for improvement. In Part II, applications of each of these approaches are presented. Based on recent case studies, the practical implications of applying each approach are discussed in depth. Part III focuses on using the approaches and tools in real-world contexts, based on insights from real-world cases. Part IV contains conclusions and a synthesis of the lessons that can be drawn for designing, applying, and implementing strategic plans under deep uncertainty, as well as recommendations for future work. The publication of this book has been funded by the Radboud University, the RAND Corporation, Delft University of Technology, and Deltares.

Methods for Decision Making in an Uncertain Environment

Methods for Decision Making in an Uncertain Environment
Title Methods for Decision Making in an Uncertain Environment PDF eBook
Author Jaime Gil Aluja
Publisher World Scientific
Pages 471
Release 2012
Genre Business & Economics
ISBN 9814415774

Download Methods for Decision Making in an Uncertain Environment Book in PDF, Epub and Kindle

This book contains a selection of the papers presented at the XVII SIGEF Congress. It presents fuzzy logic, neural networks and other intelligent techniques applied to economic and business problems. This book is very useful for researchers and graduate students aiming to introduce themselves to the field of quantitative techniques for overcoming uncertain environments. The contributors are experienced scholars of different countries who offer real world applications of these mathematical techniques.

Decisions Under Uncertainty

Decisions Under Uncertainty
Title Decisions Under Uncertainty PDF eBook
Author Ian Jordaan
Publisher Cambridge University Press
Pages 696
Release 2005-04-07
Genre Business & Economics
ISBN 9780521782777

Download Decisions Under Uncertainty Book in PDF, Epub and Kindle

Publisher Description

Environmental Decisions in the Face of Uncertainty

Environmental Decisions in the Face of Uncertainty
Title Environmental Decisions in the Face of Uncertainty PDF eBook
Author Institute of Medicine
Publisher National Academies Press
Pages 280
Release 2013-05-20
Genre Political Science
ISBN 0309290236

Download Environmental Decisions in the Face of Uncertainty Book in PDF, Epub and Kindle

The U.S. Environmental Protection Agency (EPA) is one of several federal agencies responsible for protecting Americans against significant risks to human health and the environment. As part of that mission, EPA estimates the nature, magnitude, and likelihood of risks to human health and the environment; identifies the potential regulatory actions that will mitigate those risks and protect public health1 and the environment; and uses that information to decide on appropriate regulatory action. Uncertainties, both qualitative and quantitative, in the data and analyses on which these decisions are based enter into the process at each step. As a result, the informed identification and use of the uncertainties inherent in the process is an essential feature of environmental decision making. EPA requested that the Institute of Medicine (IOM) convene a committee to provide guidance to its decision makers and their partners in states and localities on approaches to managing risk in different contexts when uncertainty is present. It also sought guidance on how information on uncertainty should be presented to help risk managers make sound decisions and to increase transparency in its communications with the public about those decisions. Given that its charge is not limited to human health risk assessment and includes broad questions about managing risks and decision making, in this report the committee examines the analysis of uncertainty in those other areas in addition to human health risks. Environmental Decisions in the Face of Uncertainty explains the statement of task and summarizes the findings of the committee.

Decision-Making Under Uncertainty

Decision-Making Under Uncertainty
Title Decision-Making Under Uncertainty PDF eBook
Author George K. Chacko
Publisher Praeger
Pages 280
Release 1991
Genre Business & Economics
ISBN

Download Decision-Making Under Uncertainty Book in PDF, Epub and Kindle

In real-life decision-making situations it is necessary to make decisions with incomplete information, for oftentimes uncertain results. In Decision-Making Under Uncertainty, Dr. Chacko applies his years of statistical research and experience to the analysis of twenty-four real-life decision-making situations, both those with few data points (eg: Cuban Missile Crisis), and many data points (eg: aspirin for heart attack prevention). These situations encompass decision-making in a variety of business, social and political, physical and biological, and military environments. Though different, all of these have one characteristic in common: their outcomes are uncertain/unkown, and unknowable. Chacko Demonstrates how the decision-maker can reduce uncertainty by choosing probable outcomes using the statistical methods he introduces. This detailed volume develops standard statistical concepts (t, x2, normal distribution, ANOVA), and the less familiar concepts (logical probability, subjective probability, Bayesian Inference, Penalty for Non-Fulfillment, Bluff-Threats Matrix, etc.). Chacko also offers a thorough discussion of the underlying theoretical principles. The end of each chapter contains a set of questions, three quarters of which focus on concepts, formulation, conclusion, resource commitments, and caveats; only one quarter with computations. Ideal for the practitioner, the work is also designed to serve as the primary text for graduate or advanced undergraduate courses in statistics and decision science.