An Invitation to C*-Algebras

An Invitation to C*-Algebras
Title An Invitation to C*-Algebras PDF eBook
Author W. Arveson
Publisher Springer Science & Business Media
Pages 117
Release 2012-12-06
Genre Mathematics
ISBN 1461263719

Download An Invitation to C*-Algebras Book in PDF, Epub and Kindle

This book gives an introduction to C*-algebras and their representations on Hilbert spaces. We have tried to present only what we believe are the most basic ideas, as simply and concretely as we could. So whenever it is convenient (and it usually is), Hilbert spaces become separable and C*-algebras become GCR. This practice probably creates an impression that nothing of value is known about other C*-algebras. Of course that is not true. But insofar as representations are con cerned, we can point to the empirical fact that to this day no one has given a concrete parametric description of even the irreducible representations of any C*-algebra which is not GCR. Indeed, there is metamathematical evidence which strongly suggests that no one ever will (see the discussion at the end of Section 3. 4). Occasionally, when the idea behind the proof of a general theorem is exposed very clearly in a special case, we prove only the special case and relegate generalizations to the exercises. In effect, we have systematically eschewed the Bourbaki tradition. We have also tried to take into account the interests of a variety of readers. For example, the multiplicity theory for normal operators is contained in Sections 2. 1 and 2. 2. (it would be desirable but not necessary to include Section 1. 1 as well), whereas someone interested in Borel structures could read Chapter 3 separately. Chapter I could be used as a bare-bones introduction to C*-algebras. Sections 2.

An Invitation to C*-Algebras

An Invitation to C*-Algebras
Title An Invitation to C*-Algebras PDF eBook
Author W. Arveson
Publisher Springer Science & Business Media
Pages 128
Release 1998-03-23
Genre Mathematics
ISBN 9780387901763

Download An Invitation to C*-Algebras Book in PDF, Epub and Kindle

This book gives an introduction to C*-algebras and their representations on Hilbert spaces. We have tried to present only what we believe are the most basic ideas, as simply and concretely as we could. So whenever it is convenient (and it usually is), Hilbert spaces become separable and C*-algebras become GCR. This practice probably creates an impression that nothing of value is known about other C*-algebras. Of course that is not true. But insofar as representations are con cerned, we can point to the empirical fact that to this day no one has given a concrete parametric description of even the irreducible representations of any C*-algebra which is not GCR. Indeed, there is metamathematical evidence which strongly suggests that no one ever will (see the discussion at the end of Section 3. 4). Occasionally, when the idea behind the proof of a general theorem is exposed very clearly in a special case, we prove only the special case and relegate generalizations to the exercises. In effect, we have systematically eschewed the Bourbaki tradition. We have also tried to take into account the interests of a variety of readers. For example, the multiplicity theory for normal operators is contained in Sections 2. 1 and 2. 2. (it would be desirable but not necessary to include Section 1. 1 as well), whereas someone interested in Borel structures could read Chapter 3 separately. Chapter I could be used as a bare-bones introduction to C*-algebras. Sections 2.

An Invitation to von Neumann Algebras

An Invitation to von Neumann Algebras
Title An Invitation to von Neumann Algebras PDF eBook
Author V.S. Sunder
Publisher Springer Science & Business Media
Pages 184
Release 2012-12-06
Genre Mathematics
ISBN 1461386691

Download An Invitation to von Neumann Algebras Book in PDF, Epub and Kindle

Why This Book: The theory of von Neumann algebras has been growing in leaps and bounds in the last 20 years. It has always had strong connections with ergodic theory and mathematical physics. It is now beginning to make contact with other areas such as differential geometry and K-Theory. There seems to be a strong case for putting together a book which (a) introduces a reader to some of the basic theory needed to appreciate the recent advances, without getting bogged down by too much technical detail; (b) makes minimal assumptions on the reader's background; and (c) is small enough in size to not test the stamina and patience of the reader. This book tries to meet these requirements. In any case, it is just what its title proclaims it to be -- an invitation to the exciting world of von Neumann algebras. It is hoped that after perusing this book, the reader might be tempted to fill in the numerous (and technically, capacious) gaps in this exposition, and to delve further into the depths of the theory. For the expert, it suffices to mention here that after some preliminaries, the book commences with the Murray - von Neumann classification of factors, proceeds through the basic modular theory to the III). classification of Connes, and concludes with a discussion of crossed-products, Krieger's ratio set, examples of factors, and Takesaki's duality theorem.

An Invitation to Unbounded Representations of ∗-Algebras on Hilbert Space

An Invitation to Unbounded Representations of ∗-Algebras on Hilbert Space
Title An Invitation to Unbounded Representations of ∗-Algebras on Hilbert Space PDF eBook
Author Konrad Schmüdgen
Publisher Springer Nature
Pages 381
Release 2020-07-28
Genre Mathematics
ISBN 3030463664

Download An Invitation to Unbounded Representations of ∗-Algebras on Hilbert Space Book in PDF, Epub and Kindle

This textbook provides an introduction to representations of general ∗-algebras by unbounded operators on Hilbert space, a topic that naturally arises in quantum mechanics but has so far only been properly treated in advanced monographs aimed at researchers. The book covers both the general theory of unbounded representation theory on Hilbert space as well as representations of important special classes of ∗-algebra, such as the Weyl algebra and enveloping algebras associated to unitary representations of Lie groups. A broad scope of topics are treated in book form for the first time, including group graded ∗-algebras, the transition probability of states, Archimedean quadratic modules, noncommutative Positivstellensätze, induced representations, well-behaved representations and representations on rigged modules. Making advanced material accessible to graduate students, this book will appeal to students and researchers interested in advanced functional analysis and mathematical physics, and with many exercises it can be used for courses on the representation theory of Lie groups and its application to quantum physics. A rich selection of material and bibliographic notes also make it a valuable reference.

Invitation to C*-algebras and Topological Dynamics

Invitation to C*-algebras and Topological Dynamics
Title Invitation to C*-algebras and Topological Dynamics PDF eBook
Author Jun Tomiyama
Publisher World Scientific
Pages 180
Release 1987
Genre Science
ISBN 9789971503383

Download Invitation to C*-algebras and Topological Dynamics Book in PDF, Epub and Kindle

This book is an exposition on the interesting interplay between topological dynamics and the theory of C*-algebras. Researchers working in topological dynamics from various fields in mathematics are becoming more and more interested in this kind of algebraic approach of dynamics. This book is designed to present to the readers the subject in an elementary way, including also results of recent developments.

C*-Algebras and Operator Theory

C*-Algebras and Operator Theory
Title C*-Algebras and Operator Theory PDF eBook
Author Gerald J. Murphy
Publisher Academic Press
Pages 297
Release 2014-06-28
Genre Mathematics
ISBN 0080924964

Download C*-Algebras and Operator Theory Book in PDF, Epub and Kindle

This book constitutes a first- or second-year graduate course in operator theory. It is a field that has great importance for other areas of mathematics and physics, such as algebraic topology, differential geometry, and quantum mechanics. It assumes a basic knowledge in functional analysis but no prior acquaintance with operator theory is required.

An Invitation to Quantum Groups and Duality

An Invitation to Quantum Groups and Duality
Title An Invitation to Quantum Groups and Duality PDF eBook
Author Thomas Timmermann
Publisher European Mathematical Society
Pages 436
Release 2008
Genre Mathematics
ISBN 9783037190432

Download An Invitation to Quantum Groups and Duality Book in PDF, Epub and Kindle

This book provides an introduction to the theory of quantum groups with emphasis on their duality and on the setting of operator algebras. Part I of the text presents the basic theory of Hopf algebras, Van Daele's duality theory of algebraic quantum groups, and Woronowicz's compact quantum groups, staying in a purely algebraic setting. Part II focuses on quantum groups in the setting of operator algebras. Woronowicz's compact quantum groups are treated in the setting of $C^*$-algebras, and the fundamental multiplicative unitaries of Baaj and Skandalis are studied in detail. An outline of Kustermans' and Vaes' comprehensive theory of locally compact quantum groups completes this part. Part III leads to selected topics, such as coactions, Baaj-Skandalis-duality, and approaches to quantum groupoids in the setting of operator algebras. The book is addressed to graduate students and non-experts from other fields. Only basic knowledge of (multi-) linear algebra is required for the first part, while the second and third part assume some familiarity with Hilbert spaces, $C^*$-algebras, and von Neumann algebras.