An Introduction to Vectors, Vector Operators and Vector Analysis
Title | An Introduction to Vectors, Vector Operators and Vector Analysis PDF eBook |
Author | Pramod S. Joag |
Publisher | Cambridge University Press |
Pages | 548 |
Release | 2016-10-13 |
Genre | Science |
ISBN | 1316870472 |
Ideal for undergraduate and graduate students of science and engineering, this book covers fundamental concepts of vectors and their applications in a single volume. The first unit deals with basic formulation, both conceptual and theoretical. It discusses applications of algebraic operations, Levi-Civita notation, and curvilinear coordinate systems like spherical polar and parabolic systems and structures, and analytical geometry of curves and surfaces. The second unit delves into the algebra of operators and their types and also explains the equivalence between the algebra of vector operators and the algebra of matrices. Formulation of eigen vectors and eigen values of a linear vector operator are elaborated using vector algebra. The third unit deals with vector analysis, discussing vector valued functions of a scalar variable and functions of vector argument (both scalar valued and vector valued), thus covering both the scalar vector fields and vector integration.
An Introduction to Vectors, Vector Operators and Vector Analysis
Title | An Introduction to Vectors, Vector Operators and Vector Analysis PDF eBook |
Author | Pramod S. Joag |
Publisher | Cambridge University Press |
Pages | 547 |
Release | 2016 |
Genre | Mathematics |
ISBN | 110715443X |
Ideal for undergraduate and graduate students of science and engineering, this book covers fundamental concepts of vectors and their applications in a single volume. The first unit deals with basic formulation, both conceptual and theoretical. It discusses applications of algebraic operations, Levi-Civita notation, and curvilinear coordinate systems like spherical polar and parabolic systems and structures, and analytical geometry of curves and surfaces. The second unit delves into the algebra of operators and their types and also explains the equivalence between the algebra of vector operators and the algebra of matrices. Formulation of eigen vectors and eigen values of a linear vector operator are elaborated using vector algebra. The third unit deals with vector analysis, discussing vector valued functions of a scalar variable and functions of vector argument (both scalar valued and vector valued), thus covering both the scalar vector fields and vector integration.
Vector Analysis
Title | Vector Analysis PDF eBook |
Author | Louis Brand |
Publisher | Courier Corporation |
Pages | 306 |
Release | 2012-06-22 |
Genre | Mathematics |
ISBN | 048615484X |
This text was designed as a short introductory course to give students the tools of vector algebra and calculus, as well as a brief glimpse into the subjects' manifold applications. 1957 edition. 86 figures.
Vector Analysis and Cartesian Tensors
Title | Vector Analysis and Cartesian Tensors PDF eBook |
Author | D. E. Bourne |
Publisher | Academic Press |
Pages | 271 |
Release | 2014-05-10 |
Genre | Mathematics |
ISBN | 1483260704 |
Vector Analysis and Cartesian Tensors, Second Edition focuses on the processes, methodologies, and approaches involved in vector analysis and Cartesian tensors, including volume integrals, coordinates, curves, and vector functions. The publication first elaborates on rectangular Cartesian coordinates and rotation of axes, scalar and vector algebra, and differential geometry of curves. Discussions focus on differentiation rules, vector functions and their geometrical representation, scalar and vector products, multiplication of a vector by a scalar, and angles between lines through the origin. The text then elaborates on scalar and vector fields and line, surface, and volume integrals, including surface, volume, and repeated integrals, general orthogonal curvilinear coordinates, and vector components in orthogonal curvilinear coordinates. The manuscript ponders on representation theorems for isotropic tensor functions, Cartesian tensors, applications in potential theory, and integral theorems. Topics include geometrical and physical significance of divergence and curl, Poisson's equation in vector form, isotropic scalar functions of symmetrical second order tensors, and diagonalization of second-order symmetrical tensors. The publication is a valuable reference for mathematicians and researchers interested in vector analysis and Cartesian tensors.
Introduction to Vector and Tensor Analysis
Title | Introduction to Vector and Tensor Analysis PDF eBook |
Author | Robert C. Wrede |
Publisher | Courier Corporation |
Pages | 436 |
Release | 2013-01-30 |
Genre | Mathematics |
ISBN | 0486137112 |
Examines general Cartesian coordinates, the cross product, Einstein's special theory of relativity, bases in general coordinate systems, maxima and minima of functions of two variables, line integrals, integral theorems, and more. 1963 edition.
Vector Analysis
Title | Vector Analysis PDF eBook |
Author | Klaus Jänich |
Publisher | Springer Science & Business Media |
Pages | 289 |
Release | 2013-03-09 |
Genre | Mathematics |
ISBN | 1475734786 |
This book presents modern vector analysis and carefully describes the classical notation and understanding of the theory. It covers all of the classical vector analysis in Euclidean space, as well as on manifolds, and goes on to introduce de Rham Cohomology, Hodge theory, elementary differential geometry, and basic duality. The material is accessible to readers and students with only calculus and linear algebra as prerequisites. A large number of illustrations, exercises, and tests with answers make this book an invaluable self-study source.
Introduction to Vectors and Tensors
Title | Introduction to Vectors and Tensors PDF eBook |
Author | Ray M. Bowen |
Publisher | Springer |
Pages | 224 |
Release | 1976-05-31 |
Genre | Mathematics |
ISBN |
To Volume 1 This work represents our effort to present the basic concepts of vector and tensor analysis. Volume 1 begins with a brief discussion of algebraic structures followed by a rather detailed discussion of the algebra of vectors and tensors. Volume 2 begins with a discussion of Euclidean manifolds, which leads to a development of the analytical and geometrical aspects of vector and tensor fields. We have not included a discussion of general differentiable manifolds. However, we have included a chapter on vector and tensor fields defined on hypersurfaces in a Euclidean manifold. In preparing this two-volume work, our intention was to present to engineering and science students a modern introduction to vectors and tensors. Traditional courses on applied mathematics have emphasized problem-solving techniques rather than the systematic development of concepts. As a result, it is possible for such courses to become terminal mathematics courses rather than courses which equip the student to develop his or her understanding further.