An Introduction to Tissue-Biomaterial Interactions
Title | An Introduction to Tissue-Biomaterial Interactions PDF eBook |
Author | Kay C. Dee |
Publisher | John Wiley & Sons |
Pages | 250 |
Release | 2003-04-14 |
Genre | Science |
ISBN | 0471461121 |
An Introduction to Tissue-Biomaterial Interactions acquaints an undergraduate audience with the fundamental biological processes that influence these sophisticated, cutting-edge procedures. Chapters one through three provide more detail about the molecular-level events that happen at the tissue-implant interface, while chapters four through ten explore selected material, biological, and physiological consequences of these events. The importance of the body’s wound-healing response is emphasized throughout. Specific topics covered include:Structure and properties of biomaterials Proteins Protein-surface interactions Blood-biomaterial interactions Inflammation and infection The immune system Biomaterial responses to implantation Biomaterial surface engineering Intimal hyperplasia and osseointegration as examples of tissue-biomaterial interactions The text also provides extensive coverage of the three pertinent interfaces between the body and the biomaterial, between the body and the living cells, and between the cells and the biomaterial that are critical in the development of tissue-engineered products that incorporate living cells within a biomaterial matrix. Ideal for a one-semester, biomedical engineering course, An Introduction to Tissue-Biomaterial Interactions provides a solid framework for understanding today’s and tomorrow’s implantable biomedical devices.
Introductory Biomaterials
Title | Introductory Biomaterials PDF eBook |
Author | Lia Stanciu |
Publisher | Academic Press |
Pages | 369 |
Release | 2021-09-23 |
Genre | Medical |
ISBN | 0128095245 |
Introductory Biomaterials enables undergraduate students in Biomedical, Chemical, Materials and other relevant Engineering disciplines to become familiar with the key concepts of Biomaterials principles: biocompatibility, structure-property-applications relationships, mechanical response of natural tissues, and cellular pathways for tissue-material ingrowth. Written in a clear, concise manner that weds theory with applications, this book helps students to understand the often intricate relationships between materials the implant devices that are made from them, and how the human body reacts to them. The book includes such concepts as requirements for metals, alloys, and ceramic materials to be used in load bearing implants (corrosion concepts, stress shielding, mechanical properties, composition), what properties of polymers impact their use in medicine (leaching and swelling, creep and stress relaxation); the tissue response to biomaterials, concepts related to drug delivery applications (polymer degradation, encapsulation), and tissue engineering (scaffold porosity, diffusion of nutrients, mechanical properties). - Begins with structure-properties, followed immediately by their impact on actual biomaterials classes and devices, thus directly relating theory to applications (e.g. polymers to polymeric stents; metals to fracture fixation devices) - Explains concepts in a clear, progressive manner, with numerous examples and figures to enhance student learning - Covers all key biomaterials classes: metallic, ceramic, polymeric, composite and biological - Includes a timely chapter on medical device regulation
Introduction to Biomaterials
Title | Introduction to Biomaterials PDF eBook |
Author | J. L. Ong |
Publisher | Cambridge University Press |
Pages | 421 |
Release | 2014 |
Genre | Medical |
ISBN | 0521116902 |
A succinct introduction to the field of biomaterials engineering, packed with practical insights.
An Introduction to Biomaterials
Title | An Introduction to Biomaterials PDF eBook |
Author | Jeffrey O. Hollinger |
Publisher | CRC Press |
Pages | 586 |
Release | 2005-12-21 |
Genre | Medical |
ISBN | 9780849322822 |
The complexity of biological systems and the need to design and develop biomedical therapies poses major challenges to professionals in the biomedical disciplines. An Introduction to Biomaterials emphasizes applications of biomaterials for patient care. Containing chapters prepared by leading authorities on key biomaterial types, this book underscores the process of biomaterial design, development directed toward clinical application, and testing that leads to therapies for clinical targets. The authors provide a lucid perspective on the standards available and the logic behind the standards in which biomaterials address clinical needs. This volume includes chapters on consensus standards and regulatory approaches to testing paradigms, followed by an analysis of specific classes of biomaterials. The book closes with sections on clinical topics that integrate materials sciences and patient applications.
Advanced Wound Repair Therapies
Title | Advanced Wound Repair Therapies PDF eBook |
Author | David Farrar |
Publisher | Elsevier |
Pages | 672 |
Release | 2011-06-21 |
Genre | Medical |
ISBN | 0857093304 |
Wound repair is an important and growing sector of the medical industry with increasingly sophisticated biomaterials and strategies being developed to treat wounds. Advanced wound repair therapies provides readers with up-to-date information on current and emerging biomaterials and advanced therapies concerned with healing surgical and chronic wounds.Part one provides an introduction to chronic wounds, with chapters covering dysfunctional wound healing, scarring and scarless wound healing and monitoring of wounds. Part two covers biomaterial therapies for chronic wounds, including chapters on functional requirements of wound repair biomaterials, polymeric materials for wound dressings and interfacial phenomena in wound healing. In part three, molecular therapies for chronic wounds are discussed, with chapters on topics such as drug delivery, molecular and gene therapies and antimicrobial dressings. Part four focuses on biologically-derived and cell-based therapies for chronic wounds, including engineered tissues, biologically-derived scaffolds and stem cell therapies for wound repair. Finally, part five covers physical stimulation therapies for chronic wounds, including electrical stimulation, negative pressure therapy and mechanical debriding devices.With its distinguished editor and international team of contributors, Advanced wound repair therapies is an essential reference for researchers and materials scientists in the wound repair industry, as well as clinicians and those with an academic research interest in the subject. - Provides readers with up-to-date information on current and emerging biomaterials and advanced therapies concerned with healing surgical and chronic wounds - Chapters include the role of micro-organisms and biofilms in dysfunctional wound healing, tissue-biomaterial interaction and electrical stimulation for wound healing - Covers biologically-derived and cell-based therapies for chronic wounds, including engineered tissues, biologically-derived scaffolds and stem cell therapies for wound repair
Biomaterials Science
Title | Biomaterials Science PDF eBook |
Author | Buddy D. Ratner |
Publisher | Elsevier |
Pages | 879 |
Release | 2004-08-18 |
Genre | Technology & Engineering |
ISBN | 008047036X |
The second edition of this bestselling title provides the most up-to-date comprehensive review of all aspects of biomaterials science by providing a balanced, insightful approach to learning biomaterials. This reference integrates a historical perspective of materials engineering principles with biological interactions of biomaterials. Also provided within are regulatory and ethical issues in addition to future directions of the field, and a state-of-the-art update of medical and biotechnological applications. All aspects of biomaterials science are thoroughly addressed, from tissue engineering to cochlear prostheses and drug delivery systems. Over 80 contributors from academia, government and industry detail the principles of cell biology, immunology, and pathology. Focus within pertains to the clinical uses of biomaterials as components in implants, devices, and artificial organs. This reference also touches upon their uses in biotechnology as well as the characterization of the physical, chemical, biochemical and surface properties of these materials. - Provides comprehensive coverage of principles and applications of all classes of biomaterials - Integrates concepts of biomaterials science and biological interactions with clinical science and societal issues including law, regulation, and ethics - Discusses successes and failures of biomaterials applications in clinical medicine and the future directions of the field - Cover the broad spectrum of biomaterial compositions including polymers, metals, ceramics, glasses, carbons, natural materials, and composites - Endorsed by the Society for Biomaterials
Peptides and Proteins as Biomaterials for Tissue Regeneration and Repair
Title | Peptides and Proteins as Biomaterials for Tissue Regeneration and Repair PDF eBook |
Author | Mario Barbosa |
Publisher | Woodhead Publishing |
Pages | 392 |
Release | 2017-09-25 |
Genre | Technology & Engineering |
ISBN | 008100852X |
Peptides and Proteins as Biomaterials for Tissue Regeneration and Repair highlights the various important considerations that go into biomaterial development, both in terms of fundamentals and applications. After covering a general introduction to protein and cell interactions with biomaterials, the book discusses proteins in biomaterials that mimic the extracellular matrix (ECM). The properties, fabrication and application of peptide biomaterials and protein-based biomaterials are discussed in addition to in vivo and in vitro studies. This book is a valuable resource for researchers, scientists and advanced students interested in biomaterials science, chemistry, molecular biology and nanotechnology. - Presents an all-inclusive and authoritative coverage of the important role which protein and peptides play as biomaterials for tissue regeneration - Explores protein and peptides from the fundamentals, to processing and applications - Written by an international group of leading biomaterials researchers