An Introduction to the Analysis of Paths on a Riemannian Manifold

An Introduction to the Analysis of Paths on a Riemannian Manifold
Title An Introduction to the Analysis of Paths on a Riemannian Manifold PDF eBook
Author Daniel W. Stroock
Publisher American Mathematical Soc.
Pages 290
Release 2000
Genre Mathematics
ISBN 0821838393

Download An Introduction to the Analysis of Paths on a Riemannian Manifold Book in PDF, Epub and Kindle

Hoping to make the text more accessible to readers not schooled in the probabalistic tradition, Stroock (affiliation unspecified) emphasizes the geometric over the stochastic analysis of differential manifolds. Chapters deconstruct Brownian paths, diffusions in Euclidean space, intrinsic and extrinsic Riemannian geometry, Bocher's identity, and the bundle of orthonormal frames. The volume humbly concludes with an "admission of defeat" in regard to recovering the Li-Yau basic differential inequality. Annotation copyrighted by Book News, Inc., Portland, OR.

An Introduction to Riemannian Geometry

An Introduction to Riemannian Geometry
Title An Introduction to Riemannian Geometry PDF eBook
Author Leonor Godinho
Publisher Springer
Pages 476
Release 2014-07-26
Genre Mathematics
ISBN 3319086669

Download An Introduction to Riemannian Geometry Book in PDF, Epub and Kindle

Unlike many other texts on differential geometry, this textbook also offers interesting applications to geometric mechanics and general relativity. The first part is a concise and self-contained introduction to the basics of manifolds, differential forms, metrics and curvature. The second part studies applications to mechanics and relativity including the proofs of the Hawking and Penrose singularity theorems. It can be independently used for one-semester courses in either of these subjects. The main ideas are illustrated and further developed by numerous examples and over 300 exercises. Detailed solutions are provided for many of these exercises, making An Introduction to Riemannian Geometry ideal for self-study.

The Laplacian on a Riemannian Manifold

The Laplacian on a Riemannian Manifold
Title The Laplacian on a Riemannian Manifold PDF eBook
Author Steven Rosenberg
Publisher Cambridge University Press
Pages 190
Release 1997-01-09
Genre Mathematics
ISBN 9780521468312

Download The Laplacian on a Riemannian Manifold Book in PDF, Epub and Kindle

This text on analysis of Riemannian manifolds is aimed at students who have had a first course in differentiable manifolds.

On the Hypotheses Which Lie at the Bases of Geometry

On the Hypotheses Which Lie at the Bases of Geometry
Title On the Hypotheses Which Lie at the Bases of Geometry PDF eBook
Author Bernhard Riemann
Publisher Birkhäuser
Pages 181
Release 2016-04-19
Genre Mathematics
ISBN 3319260421

Download On the Hypotheses Which Lie at the Bases of Geometry Book in PDF, Epub and Kindle

This book presents William Clifford’s English translation of Bernhard Riemann’s classic text together with detailed mathematical, historical and philosophical commentary. The basic concepts and ideas, as well as their mathematical background, are provided, putting Riemann’s reasoning into the more general and systematic perspective achieved by later mathematicians and physicists (including Helmholtz, Ricci, Weyl, and Einstein) on the basis of his seminal ideas. Following a historical introduction that positions Riemann’s work in the context of his times, the history of the concept of space in philosophy, physics and mathematics is systematically presented. A subsequent chapter on the reception and influence of the text accompanies the reader from Riemann’s times to contemporary research. Not only mathematicians and historians of the mathematical sciences, but also readers from other disciplines or those with an interest in physics or philosophy will find this work both appealing and insightful.

Riemannian Manifolds

Riemannian Manifolds
Title Riemannian Manifolds PDF eBook
Author John M. Lee
Publisher Springer Science & Business Media
Pages 232
Release 2006-04-06
Genre Mathematics
ISBN 0387227261

Download Riemannian Manifolds Book in PDF, Epub and Kindle

This text focuses on developing an intimate acquaintance with the geometric meaning of curvature and thereby introduces and demonstrates all the main technical tools needed for a more advanced course on Riemannian manifolds. It covers proving the four most fundamental theorems relating curvature and topology: the Gauss-Bonnet Theorem, the Cartan-Hadamard Theorem, Bonnet’s Theorem, and a special case of the Cartan-Ambrose-Hicks Theorem.

Isometric Embedding of Riemannian Manifolds in Euclidean Spaces

Isometric Embedding of Riemannian Manifolds in Euclidean Spaces
Title Isometric Embedding of Riemannian Manifolds in Euclidean Spaces PDF eBook
Author Qing Han
Publisher American Mathematical Soc.
Pages 278
Release 2006
Genre Mathematics
ISBN 0821840711

Download Isometric Embedding of Riemannian Manifolds in Euclidean Spaces Book in PDF, Epub and Kindle

The question of the existence of isometric embeddings of Riemannian manifolds in Euclidean space is already more than a century old. This book presents, in a systematic way, results both local and global and in arbitrary dimension but with a focus on the isometric embedding of surfaces in ${\mathbb R}^3$. The emphasis is on those PDE techniques which are essential to the most important results of the last century. The classic results in this book include the Janet-Cartan Theorem, Nirenberg's solution of the Weyl problem, and Nash's Embedding Theorem, with a simplified proof by Gunther. The book also includes the main results from the past twenty years, both local and global, on the isometric embedding of surfaces in Euclidean 3-space. The work will be indispensable to researchers in the area. Moreover, the authors integrate the results and techniques into a unified whole, providing a good entry point into the area for advanced graduate students or anyone interested in this subject. The authors avoid what is technically complicated. Background knowledge is kept to an essential minimum: a one-semester course in differential geometry and a one-year course in partial differential equations.

Ricci Flow and the Poincare Conjecture

Ricci Flow and the Poincare Conjecture
Title Ricci Flow and the Poincare Conjecture PDF eBook
Author John W. Morgan
Publisher American Mathematical Soc.
Pages 586
Release 2007
Genre Mathematics
ISBN 9780821843284

Download Ricci Flow and the Poincare Conjecture Book in PDF, Epub and Kindle

For over 100 years the Poincare Conjecture, which proposes a topological characterization of the 3-sphere, has been the central question in topology. Since its formulation, it has been repeatedly attacked, without success, using various topological methods. Its importance and difficulty were highlighted when it was chosen as one of the Clay Mathematics Institute's seven Millennium Prize Problems. in 2002 and 2003 Grigory Perelman posted three preprints showing how to use geometric arguments, in particular the Ricci flow as introduced and studied by Hamilton, to establish the Poincare Conjecture in the affirmative. This book provides full details of a complete proof of the Poincare Conjecture following Perelman's three preprints. After a lengthy introduction that outlines the entire argument, the book is divided into four parts. The first part reviews necessary results from Riemannian geometry and Ricci flow, including much of Hamilton's work. The second part starts with Perelman's length function, which is used to establish crucial non-collapsing theorems. Then it discusses the classification of non-collapsed, ancient solutions to the Ricci flow equation. The third part concerns the existence of Ricci flow with surgery for all positive time and an analysis of the topological and geometric changes introduced by surgery. The last part follows Perelman's third preprint to prove that when the initial Riemannian 3-manifold has finite fundamental group, Ricci flow with surgery becomes extinct after finite time. The proofs of the Poincare Conjecture and the closely related 3-dimensional spherical space-form conjectu The existence of Ricci flow with surgery has application to 3-manifolds far beyond the Poincare Conjecture. It forms the heart of the proof via Ricci flow of Thurston's Geometrization Conjecture. Thurston's Geometrization Conjecture, which classifies all compact 3-manifolds, will be the subject of a follow-up article. The organization of the material in this book differs from that given by Perelman. From the beginning the authors present all analytic and geometric arguments in the context of Ricci flow with surgery. in addition, the fourth part is a much-expanded version of Perelman's third preprint; it gives the first complete and detailed proof of the finite-time extinction theorem. With the large amount of background material that is presented and the detailed versions of the central arguments, this book is suitable for all mathematicians from advanced graduate students to specialists in geometry and topology. Clay Mathematics Institute Monograph Series The Clay Mathematics Institute Monograph Series publishes selected expositions of recent developments, both in emerging areas and in older subjects transformed by new insights or unifying ideas. Information for our distributors: Titles in this series are co-published with the Clay Mathematics Institute (Cambridge, MA).