An Introduction to Riemann Surfaces, Algebraic Curves and Moduli Spaces

An Introduction to Riemann Surfaces, Algebraic Curves and Moduli Spaces
Title An Introduction to Riemann Surfaces, Algebraic Curves and Moduli Spaces PDF eBook
Author Martin Schlichenmaier
Publisher Springer
Pages 172
Release 1989-01-11
Genre Mathematics
ISBN

Download An Introduction to Riemann Surfaces, Algebraic Curves and Moduli Spaces Book in PDF, Epub and Kindle

This lecture is intended as an introduction to the mathematical concepts of algebraic and analytic geometry. It is addressed primarily to theoretical physicists, in particular those working in string theories. The author gives a very clear exposition of the main theorems, introducing the necessary concepts by lucid examples, and shows how to work with the methods of algebraic geometry. As an example he presents the Krichever-Novikov construction of algebras of Virasaro type. The book will be welcomed by many researchers as an overview of an important branch of mathematics, a collection of useful formulae and an excellent guide to the more extensive mathematical literature.

Moduli Spaces of Riemann Surfaces

Moduli Spaces of Riemann Surfaces
Title Moduli Spaces of Riemann Surfaces PDF eBook
Author Benson Farb
Publisher American Mathematical Soc.
Pages 371
Release 2013-08-16
Genre Mathematics
ISBN 0821898876

Download Moduli Spaces of Riemann Surfaces Book in PDF, Epub and Kindle

Mapping class groups and moduli spaces of Riemann surfaces were the topics of the Graduate Summer School at the 2011 IAS/Park City Mathematics Institute. This book presents the nine different lecture series comprising the summer school, covering a selection of topics of current interest. The introductory courses treat mapping class groups and Teichmüller theory. The more advanced courses cover intersection theory on moduli spaces, the dynamics of polygonal billiards and moduli spaces, the stable cohomology of mapping class groups, the structure of Torelli groups, and arithmetic mapping class groups. The courses consist of a set of intensive short lectures offered by leaders in the field, designed to introduce students to exciting, current research in mathematics. These lectures do not duplicate standard courses available elsewhere. The book should be a valuable resource for graduate students and researchers interested in the topology, geometry and dynamics of moduli spaces of Riemann surfaces and related topics. Titles in this series are co-published with the Institute for Advanced Study/Park City Mathematics Institute. Members of the Mathematical Association of America (MAA) and the National Council of Teachers of Mathematics (NCTM) receive a 20% discount from list price.

An Introduction to Riemann Surfaces, Algebraic Curves and Moduli Spaces

An Introduction to Riemann Surfaces, Algebraic Curves and Moduli Spaces
Title An Introduction to Riemann Surfaces, Algebraic Curves and Moduli Spaces PDF eBook
Author Martin Schlichenmaier
Publisher Springer Science & Business Media
Pages 228
Release 2010-02-11
Genre Science
ISBN 3540711759

Download An Introduction to Riemann Surfaces, Algebraic Curves and Moduli Spaces Book in PDF, Epub and Kindle

This book gives an introduction to modern geometry. Starting from an elementary level, the author develops deep geometrical concepts that play an important role in contemporary theoretical physics, presenting various techniques and viewpoints along the way. This second edition contains two additional, more advanced geometric techniques: the modern language and modern view of Algebraic Geometry and Mirror Symmetry.

Riemann Surfaces and Algebraic Curves

Riemann Surfaces and Algebraic Curves
Title Riemann Surfaces and Algebraic Curves PDF eBook
Author Renzo Cavalieri
Publisher Cambridge University Press
Pages 197
Release 2016-09-26
Genre Mathematics
ISBN 1316798933

Download Riemann Surfaces and Algebraic Curves Book in PDF, Epub and Kindle

Hurwitz theory, the study of analytic functions among Riemann surfaces, is a classical field and active research area in algebraic geometry. The subject's interplay between algebra, geometry, topology and analysis is a beautiful example of the interconnectedness of mathematics. This book introduces students to this increasingly important field, covering key topics such as manifolds, monodromy representations and the Hurwitz potential. Designed for undergraduate study, this classroom-tested text includes over 100 exercises to provide motivation for the reader. Also included are short essays by guest writers on how they use Hurwitz theory in their work, which ranges from string theory to non-Archimedean geometry. Whether used in a course or as a self-contained reference for graduate students, this book will provide an exciting glimpse at mathematics beyond the standard university classes.

Algebraic Curves and Riemann Surfaces

Algebraic Curves and Riemann Surfaces
Title Algebraic Curves and Riemann Surfaces PDF eBook
Author Rick Miranda
Publisher American Mathematical Soc.
Pages 414
Release 1995
Genre Mathematics
ISBN 0821802682

Download Algebraic Curves and Riemann Surfaces Book in PDF, Epub and Kindle

In this book, Miranda takes the approach that algebraic curves are best encountered for the first time over the complex numbers, where the reader's classical intuition about surfaces, integration, and other concepts can be brought into play. Therefore, many examples of algebraic curves are presented in the first chapters. In this way, the book begins as a primer on Riemann surfaces, with complex charts and meromorphic functions taking centre stage. But the main examples come fromprojective curves, and slowly but surely the text moves toward the algebraic category. Proofs of the Riemann-Roch and Serre Dualtiy Theorems are presented in an algebraic manner, via an adaptation of the adelic proof, expressed completely in terms of solving a Mittag-Leffler problem. Sheaves andcohomology are introduced as a unifying device in the later chapters, so that their utility and naturalness are immediately obvious. Requiring a background of one term of complex variable theory and a year of abstract algebra, this is an excellent graduate textbook for a second-term course in complex variables or a year-long course in algebraic geometry.

Introduction to Moduli Spaces of Riemann Surfaces and Tropical Curves

Introduction to Moduli Spaces of Riemann Surfaces and Tropical Curves
Title Introduction to Moduli Spaces of Riemann Surfaces and Tropical Curves PDF eBook
Author Lizhen Ji
Publisher
Pages 221
Release 2017
Genre Geometry, Algebraic
ISBN 9787040474190

Download Introduction to Moduli Spaces of Riemann Surfaces and Tropical Curves Book in PDF, Epub and Kindle

Algebraic Curves

Algebraic Curves
Title Algebraic Curves PDF eBook
Author Maxim E. Kazaryan
Publisher Springer
Pages 237
Release 2019-01-21
Genre Mathematics
ISBN 3030029433

Download Algebraic Curves Book in PDF, Epub and Kindle

This book offers a concise yet thorough introduction to the notion of moduli spaces of complex algebraic curves. Over the last few decades, this notion has become central not only in algebraic geometry, but in mathematical physics, including string theory, as well. The book begins by studying individual smooth algebraic curves, including the most beautiful ones, before addressing families of curves. Studying families of algebraic curves often proves to be more efficient than studying individual curves: these families and their total spaces can still be smooth, even if there are singular curves among their members. A major discovery of the 20th century, attributed to P. Deligne and D. Mumford, was that curves with only mild singularities form smooth compact moduli spaces. An unexpected byproduct of this discovery was the realization that the analysis of more complex curve singularities is not a necessary step in understanding the geometry of the moduli spaces. The book does not use the sophisticated machinery of modern algebraic geometry, and most classical objects related to curves – such as Jacobian, space of holomorphic differentials, the Riemann-Roch theorem, and Weierstrass points – are treated at a basic level that does not require a profound command of algebraic geometry, but which is sufficient for extending them to vector bundles and other geometric objects associated to moduli spaces. Nevertheless, it offers clear information on the construction of the moduli spaces, and provides readers with tools for practical operations with this notion. Based on several lecture courses given by the authors at the Independent University of Moscow and Higher School of Economics, the book also includes a wealth of problems, making it suitable not only for individual research, but also as a textbook for undergraduate and graduate coursework