An Introduction to Random Sets
Title | An Introduction to Random Sets PDF eBook |
Author | Hung T. Nguyen |
Publisher | CRC Press |
Pages | 268 |
Release | 2006-03-27 |
Genre | Mathematics |
ISBN | 1420010611 |
The study of random sets is a large and rapidly growing area with connections to many areas of mathematics and applications in widely varying disciplines, from economics and decision theory to biostatistics and image analysis. The drawback to such diversity is that the research reports are scattered throughout the literature, with the result that i
Random Sets
Title | Random Sets PDF eBook |
Author | John Goutsias |
Publisher | Springer Science & Business Media |
Pages | 417 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 1461219426 |
This IMA Volume in Mathematics and its Applications RANDOM SETS: THEORY AND APPLICATIONS is based on the proceedings of a very successful 1996 three-day Summer Program on "Application and Theory of Random Sets." We would like to thank the scientific organizers: John Goutsias (Johns Hopkins University), Ronald P.S. Mahler (Lockheed Martin), and Hung T. Nguyen (New Mexico State University) for their excellent work as organizers of the meeting and for editing the proceedings. We also take this opportunity to thank the Army Research Office (ARO), the Office ofNaval Research (0NR), and the Eagan, MinnesotaEngineering Center ofLockheed Martin Tactical Defense Systems, whose financial support made the summer program possible. Avner Friedman Robert Gulliver v PREFACE "Later generations will regard set theory as a disease from which one has recovered. " - Henri Poincare Random set theory was independently conceived by D.G. Kendall and G. Matheron in connection with stochastic geometry. It was however G.
Theory of Random Sets
Title | Theory of Random Sets PDF eBook |
Author | Ilya Molchanov |
Publisher | Springer |
Pages | 688 |
Release | 2017-12-14 |
Genre | Mathematics |
ISBN | 144717349X |
This monograph, now in a thoroughly revised second edition, offers the latest research on random sets. It has been extended to include substantial developments achieved since 2005, some of them motivated by applications of random sets to econometrics and finance. The present volume builds on the foundations laid by Matheron and others, including the vast advances in stochastic geometry, probability theory, set-valued analysis, and statistical inference. It shows the various interdisciplinary relationships of random set theory within other parts of mathematics, and at the same time fixes terminology and notation that often vary in the literature, establishing it as a natural part of modern probability theory and providing a platform for future development. It is completely self-contained, systematic and exhaustive, with the full proofs that are necessary to gain insight. Aimed at research level, Theory of Random Sets will be an invaluable reference for probabilists; mathematicians working in convex and integral geometry, set-valued analysis, capacity and potential theory; mathematical statisticians in spatial statistics and uncertainty quantification; specialists in mathematical economics, econometrics, decision theory, and mathematical finance; and electronic and electrical engineers interested in image analysis.
Theory of Random Sets
Title | Theory of Random Sets PDF eBook |
Author | Ilya Molchanov |
Publisher | Springer Science & Business Media |
Pages | 508 |
Release | 2005-05-11 |
Genre | Mathematics |
ISBN | 9781852338923 |
This is the first systematic exposition of random sets theory since Matheron (1975), with full proofs, exhaustive bibliographies and literature notes Interdisciplinary connections and applications of random sets are emphasized throughout the book An extensive bibliography in the book is available on the Web at http://liinwww.ira.uka.de/bibliography/math/random.closed.sets.html, and is accompanied by a search engine
An Introduction to Random Currents and Their Applications
Title | An Introduction to Random Currents and Their Applications PDF eBook |
Author | Vincenzo Capasso |
Publisher | Springer |
Pages | 146 |
Release | 2018-08-02 |
Genre | Mathematics |
ISBN | 3319945777 |
This book introduces random currents by presenting underlying mathematical methods necessary for applications. The theory of currents is an advanced topic in geometric measure theory that extends distribution to linear functionals within the space of differential forms of any order. Methods to extend random distributions to random currents are introduced and analyzed in this book. Beginning with an overview of mathematical aspects of the theory of currents, this book moves on to examine applications in medicine, material science, and image analysis. Applied researchers will find the practical modern mathematical methods along with the detailed appendix useful to stimulate new applications and research.
Random Sets and Random Fuzzy Sets as Ill-Perceived Random Variables
Title | Random Sets and Random Fuzzy Sets as Ill-Perceived Random Variables PDF eBook |
Author | Inés Couso |
Publisher | Springer |
Pages | 104 |
Release | 2014-07-22 |
Genre | Technology & Engineering |
ISBN | 3319086111 |
This short book provides a unified view of the history and theory of random sets and fuzzy random variables, with special emphasis on its use for representing higher-order non-statistical uncertainty about statistical experiments. The authors lay bare the existence of two streams of works using the same mathematical ground, but differing form their use of sets, according to whether they represent objects of interest naturally taking the form of sets, or imprecise knowledge about such objects. Random (fuzzy) sets can be used in many fields ranging from mathematical morphology, economics, artificial intelligence, information processing and statistics per se, especially in areas where the outcomes of random experiments cannot be observed with full precision. This book also emphasizes the link between random sets and fuzzy sets with some techniques related to the theory of imprecise probabilities. This small book is intended for graduate and doctoral students in mathematics or engineering, but also provides an introduction for other researchers interested in this area. It is written from a theoretical perspective. However, rather than offering a comprehensive formal view of random (fuzzy) sets in this context, it aims to provide a discussion of the meaning of the proposed formal constructions based on many concrete examples and exercises. This book should enable the reader to understand the usefulness of representing and reasoning with incomplete information in statistical tasks. Each chapter ends with a list of exercises.
An Introduction to Random Interlacements
Title | An Introduction to Random Interlacements PDF eBook |
Author | Alexander Drewitz |
Publisher | Springer |
Pages | 124 |
Release | 2014-05-06 |
Genre | Mathematics |
ISBN | 3319058525 |
This book gives a self-contained introduction to the theory of random interlacements. The intended reader of the book is a graduate student with a background in probability theory who wants to learn about the fundamental results and methods of this rapidly emerging field of research. The model was introduced by Sznitman in 2007 in order to describe the local picture left by the trace of a random walk on a large discrete torus when it runs up to times proportional to the volume of the torus. Random interlacements is a new percolation model on the d-dimensional lattice. The main results covered by the book include the full proof of the local convergence of random walk trace on the torus to random interlacements and the full proof of the percolation phase transition of the vacant set of random interlacements in all dimensions. The reader will become familiar with the techniques relevant to working with the underlying Poisson Process and the method of multi-scale renormalization, which helps in overcoming the challenges posed by the long-range correlations present in the model. The aim is to engage the reader in the world of random interlacements by means of detailed explanations, exercises and heuristics. Each chapter ends with short survey of related results with up-to date pointers to the literature.