An Introduction to Noncommutative Geometry

An Introduction to Noncommutative Geometry
Title An Introduction to Noncommutative Geometry PDF eBook
Author Joseph C. Várilly
Publisher European Mathematical Society
Pages 134
Release 2006
Genre Mathematics
ISBN 9783037190241

Download An Introduction to Noncommutative Geometry Book in PDF, Epub and Kindle

Noncommutative geometry, inspired by quantum physics, describes singular spaces by their noncommutative coordinate algebras and metric structures by Dirac-like operators. Such metric geometries are described mathematically by Connes' theory of spectral triples. These lectures, delivered at an EMS Summer School on noncommutative geometry and its applications, provide an overview of spectral triples based on examples. This introduction is aimed at graduate students of both mathematics and theoretical physics. It deals with Dirac operators on spin manifolds, noncommutative tori, Moyal quantization and tangent groupoids, action functionals, and isospectral deformations. The structural framework is the concept of a noncommutative spin geometry; the conditions on spectral triples which determine this concept are developed in detail. The emphasis throughout is on gaining understanding by computing the details of specific examples. The book provides a middle ground between a comprehensive text and a narrowly focused research monograph. It is intended for self-study, enabling the reader to gain access to the essentials of noncommutative geometry. New features since the original course are an expanded bibliography and a survey of more recent examples and applications of spectral triples.

An Introduction to Noncommutative Spaces and Their Geometries

An Introduction to Noncommutative Spaces and Their Geometries
Title An Introduction to Noncommutative Spaces and Their Geometries PDF eBook
Author Giovanni Landi
Publisher Springer Science & Business Media
Pages 216
Release 2003-07-01
Genre Science
ISBN 354014949X

Download An Introduction to Noncommutative Spaces and Their Geometries Book in PDF, Epub and Kindle

These lecture notes are an introduction to several ideas and applications of noncommutative geometry. It starts with a not necessarily commutative but associative algebra which is thought of as the algebra of functions on some 'virtual noncommutative space'. Attention is switched from spaces, which in general do not even exist, to algebras of functions. In these notes, particular emphasis is put on seeing noncommutative spaces as concrete spaces, namely as a collection of points with a topology. The necessary mathematical tools are presented in a systematic and accessible way and include among other things, C'*-algebras, module theory and K-theory, spectral calculus, forms and connection theory. Application to Yang--Mills, fermionic, and gravity models are described. Also the spectral action and the related invariance under automorphism of the algebra is illustrated. Some recent work on noncommutative lattices is presented. These lattices arose as topologically nontrivial approximations to 'contuinuum' topological spaces. They have been used to construct quantum-mechanical and field-theory models, alternative models to lattice gauge theory, with nontrivial topological content. This book will be essential to physicists and mathematicians with an interest in noncommutative geometry and its uses in physics.

An Introduction to Noncommutative Differential Geometry and Its Physical Applications

An Introduction to Noncommutative Differential Geometry and Its Physical Applications
Title An Introduction to Noncommutative Differential Geometry and Its Physical Applications PDF eBook
Author J. Madore
Publisher Cambridge University Press
Pages 381
Release 1999-06-24
Genre Mathematics
ISBN 0521659914

Download An Introduction to Noncommutative Differential Geometry and Its Physical Applications Book in PDF, Epub and Kindle

A thoroughly revised introduction to non-commutative geometry.

Noncommutative Geometry

Noncommutative Geometry
Title Noncommutative Geometry PDF eBook
Author Alain Connes
Publisher Springer
Pages 364
Release 2003-12-15
Genre Mathematics
ISBN 3540397027

Download Noncommutative Geometry Book in PDF, Epub and Kindle

Noncommutative Geometry is one of the most deep and vital research subjects of present-day Mathematics. Its development, mainly due to Alain Connes, is providing an increasing number of applications and deeper insights for instance in Foliations, K-Theory, Index Theory, Number Theory but also in Quantum Physics of elementary particles. The purpose of the Summer School in Martina Franca was to offer a fresh invitation to the subject and closely related topics; the contributions in this volume include the four main lectures, cover advanced developments and are delivered by prominent specialists.

Noncommutative Geometry and Particle Physics

Noncommutative Geometry and Particle Physics
Title Noncommutative Geometry and Particle Physics PDF eBook
Author Walter D. van Suijlekom
Publisher Springer
Pages 246
Release 2014-07-21
Genre Science
ISBN 9401791627

Download Noncommutative Geometry and Particle Physics Book in PDF, Epub and Kindle

This book provides an introduction to noncommutative geometry and presents a number of its recent applications to particle physics. It is intended for graduate students in mathematics/theoretical physics who are new to the field of noncommutative geometry, as well as for researchers in mathematics/theoretical physics with an interest in the physical applications of noncommutative geometry. In the first part, we introduce the main concepts and techniques by studying finite noncommutative spaces, providing a “light” approach to noncommutative geometry. We then proceed with the general framework by defining and analyzing noncommutative spin manifolds and deriving some main results on them, such as the local index formula. In the second part, we show how noncommutative spin manifolds naturally give rise to gauge theories, applying this principle to specific examples. We subsequently geometrically derive abelian and non-abelian Yang-Mills gauge theories, and eventually the full Standard Model of particle physics, and conclude by explaining how noncommutative geometry might indicate how to proceed beyond the Standard Model.

An Introduction to Noncommutative Spaces and Their Geometries

An Introduction to Noncommutative Spaces and Their Geometries
Title An Introduction to Noncommutative Spaces and Their Geometries PDF eBook
Author Giovanni Landi
Publisher Springer
Pages 207
Release 2014-08-23
Genre Science
ISBN 9783662141090

Download An Introduction to Noncommutative Spaces and Their Geometries Book in PDF, Epub and Kindle

These lecture notes are an introduction to several ideas and applications of noncommutative geometry. It starts with a not necessarily commutative but associative algebra which is thought of as the algebra of functions on some 'virtual noncommutative space'. Attention is switched from spaces, which in general do not even exist, to algebras of functions. In these notes, particular emphasis is put on seeing noncommutative spaces as concrete spaces, namely as a collection of points with a topology. The necessary mathematical tools are presented in a systematic and accessible way and include among other things, C'*-algebras, module theory and K-theory, spectral calculus, forms and connection theory. Application to Yang--Mills, fermionic, and gravity models are described. Also the spectral action and the related invariance under automorphism of the algebra is illustrated. Some recent work on noncommutative lattices is presented. These lattices arose as topologically nontrivial approximations to 'contuinuum' topological spaces. They have been used to construct quantum-mechanical and field-theory models, alternative models to lattice gauge theory, with nontrivial topological content. This book will be essential to physicists and mathematicians with an interest in noncommutative geometry and its uses in physics.

Topics in Non-Commutative Geometry

Topics in Non-Commutative Geometry
Title Topics in Non-Commutative Geometry PDF eBook
Author Y. Manin
Publisher Princeton University Press
Pages 173
Release 2014-07-14
Genre Mathematics
ISBN 1400862515

Download Topics in Non-Commutative Geometry Book in PDF, Epub and Kindle

There is a well-known correspondence between the objects of algebra and geometry: a space gives rise to a function algebra; a vector bundle over the space corresponds to a projective module over this algebra; cohomology can be read off the de Rham complex; and so on. In this book Yuri Manin addresses a variety of instances in which the application of commutative algebra cannot be used to describe geometric objects, emphasizing the recent upsurge of activity in studying noncommutative rings as if they were function rings on "noncommutative spaces." Manin begins by summarizing and giving examples of some of the ideas that led to the new concepts of noncommutative geometry, such as Connes' noncommutative de Rham complex, supergeometry, and quantum groups. He then discusses supersymmetric algebraic curves that arose in connection with superstring theory; examines superhomogeneous spaces, their Schubert cells, and superanalogues of Weyl groups; and provides an introduction to quantum groups. This book is intended for mathematicians and physicists with some background in Lie groups and complex geometry. Originally published in 1991. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.