Computational Multiscale Modeling of Fluids and Solids

Computational Multiscale Modeling of Fluids and Solids
Title Computational Multiscale Modeling of Fluids and Solids PDF eBook
Author Martin Oliver Steinhauser
Publisher Springer Science & Business Media
Pages 432
Release 2007-10-28
Genre Science
ISBN 3540751173

Download Computational Multiscale Modeling of Fluids and Solids Book in PDF, Epub and Kindle

Devastatingly simple, yet hugely effective, the concept of this timely text is to provide a comprehensive overview of computational physics methods and techniques used for materials modeling on different length and time scales. Each chapter first provides an overview of the physical basic principles which are the basis for the numerical and mathematical modeling on the respective length scale. The book includes the micro scale, the meso-scale and the macro scale.

Principles of Multiscale Modeling

Principles of Multiscale Modeling
Title Principles of Multiscale Modeling PDF eBook
Author Weinan E
Publisher Cambridge University Press
Pages 485
Release 2011-07-07
Genre Mathematics
ISBN 1107096545

Download Principles of Multiscale Modeling Book in PDF, Epub and Kindle

A systematic discussion of the fundamental principles, written by a leading contributor to the field.

Multiscale Modeling for Process Safety Applications

Multiscale Modeling for Process Safety Applications
Title Multiscale Modeling for Process Safety Applications PDF eBook
Author Arnab Chakrabarty
Publisher Butterworth-Heinemann
Pages 446
Release 2015-11-29
Genre Technology & Engineering
ISBN 0123972833

Download Multiscale Modeling for Process Safety Applications Book in PDF, Epub and Kindle

Multiscale Modeling for Process Safety Applications is a new reference demonstrating the implementation of multiscale modeling techniques on process safety applications. It is a valuable resource for readers interested in theoretical simulations and/or computer simulations of hazardous scenarios. As multi-scale modeling is a computational technique for solving problems involving multiple scales, such as how a flammable vapor cloud might behave if ignited, this book provides information on the fundamental topics of toxic, fire, and air explosion modeling, as well as modeling jet and pool fires using computational fluid dynamics. The book goes on to cover nanomaterial toxicity, QPSR analysis on relation of chemical structure to flash point, molecular structure and burning velocity, first principle studies of reactive chemicals, water and air reactive chemicals, and dust explosions. Chemical and process safety professionals, as well as faculty and graduate researchers, will benefit from the detailed coverage provided in this book. - Provides the only comprehensive source addressing the use of multiscale modeling in the context of process safety - Bridges multiscale modeling with process safety, enabling the reader to understand mapping between problem detail and effective usage of resources - Presents an overall picture of addressing safety problems in all levels of modeling and the latest approaches to each in the field - Features worked out examples, case studies, and a question bank to aid understanding and involvement for the reader

An Introduction to Multiscale Modeling with Applications

An Introduction to Multiscale Modeling with Applications
Title An Introduction to Multiscale Modeling with Applications PDF eBook
Author Pietro Asinari
Publisher Società Editrice Esculapio
Pages 372
Release 2013-09-01
Genre Science
ISBN 8874885873

Download An Introduction to Multiscale Modeling with Applications Book in PDF, Epub and Kindle

This book collects the slides prepared for the course of Advanced Engineering Thermodynamics (Master of Science in Mechanical Engineering) and those for the course of Multiscale Modelling and Simulation of Molecular and Mesoscopic Dynamics (PhD Program in Energetics), taught in English at Turin Polytechnic. Here, we provide a broad overview on the different topics taught in our classes. Even though not all topics are presented in the same class, students should be able to more easily reconstruct the connections among different phenomena (and scales), build their own mind map and, eventually, find their own way of deepening the subjects they are more interested in. Several engineering applications have been included. This helps in stressing that very different phenomena are described by transport theory and obey the same underlying fundamental laws of engineering thermodynamics. Detailed tutorials are reported, based on open-source codes for the laboratories (Gromacs, Palabos, OpenFoam and Cantera).

Multiscale Modeling of Pedestrian Dynamics

Multiscale Modeling of Pedestrian Dynamics
Title Multiscale Modeling of Pedestrian Dynamics PDF eBook
Author Emiliano Cristiani
Publisher Springer
Pages 271
Release 2014-09-12
Genre Mathematics
ISBN 331906620X

Download Multiscale Modeling of Pedestrian Dynamics Book in PDF, Epub and Kindle

This book presents mathematical models and numerical simulations of crowd dynamics. The core topic is the development of a new multiscale paradigm, which bridges the microscopic and macroscopic scales taking the most from each of them for capturing the relevant clues of complexity of crowds. The background idea is indeed that most of the complex trends exhibited by crowds are due to an intrinsic interplay between individual and collective behaviors. The modeling approach promoted in this book pursues actively this intuition and profits from it for designing general mathematical structures susceptible of application also in fields different from the inspiring original one. The book considers also the two most traditional points of view: the microscopic one, in which pedestrians are tracked individually and the macroscopic one, in which pedestrians are assimilated to a continuum. Selected existing models are critically analyzed. The work is addressed to researchers and graduate students.

Multiscale Modeling in Solid Mechanics

Multiscale Modeling in Solid Mechanics
Title Multiscale Modeling in Solid Mechanics PDF eBook
Author Ugo Galvanetto
Publisher Imperial College Press
Pages 349
Release 2010
Genre Science
ISBN 1848163088

Download Multiscale Modeling in Solid Mechanics Book in PDF, Epub and Kindle

This unique volume presents the state of the art in the field of multiscale modeling in solid mechanics, with particular emphasis on computational approaches. For the first time, contributions from both leading experts in the field and younger promising researchers are combined to give a comprehensive description of the recently proposed techniques and the engineering problems tackled using these techniques. The book begins with a detailed introduction to the theories on which different multiscale approaches are based, with regards to linear Homogenisation as well as various nonlinear approaches. It then presents advanced applications of multiscale approaches applied to nonlinear mechanical problems. Finally, the novel topic of materials with self-similar structure is discussed. Sample Chapter(s). Chapter 1: Computational Homogenisation for Non-Linear Heterogeneous Solids (808 KB). Contents: Computational Homogenisation for Non-Linear Heterogeneous Solids (V G Kouznetsova et al.); Two-Scale Asymptotic Homogenisation-Based Finite Element Analysis of Composite Materials (Q-Z Xiao & B L Karihaloo); Multi-Scale Boundary Element Modelling of Material Degradation and Fracture (G K Sfantos & M H Aliabadi); Non-Uniform Transformation Field Analysis: A Reduced Model for Multiscale Non-Linear Problems in Solid Mechanics (J-C Michel & P Suquet); Multiscale Approach for the Thermomechanical Analysis of Hierarchical Structures (M J Lefik et al.); Recent Advances in Masonry Modelling: Micro-Modelling and Homogenisation (P B Louren o); Mechanics of Materials with Self-Similar Hierarchical Microstructure (R C Picu & M A Soare). Readership: Researchers and academics in the field of heterogeneous materials and mechanical engineering; professionals in aeronautical engineering and materials science.

Multiscale Materials Modeling for Nanomechanics

Multiscale Materials Modeling for Nanomechanics
Title Multiscale Materials Modeling for Nanomechanics PDF eBook
Author Christopher R. Weinberger
Publisher Springer
Pages 554
Release 2016-08-30
Genre Technology & Engineering
ISBN 3319334808

Download Multiscale Materials Modeling for Nanomechanics Book in PDF, Epub and Kindle

This book presents a unique combination of chapters that together provide a practical introduction to multiscale modeling applied to nanoscale materials mechanics. The goal of this book is to present a balanced treatment of both the theory of the methodology, as well as some practical aspects of conducting the simulations and models. The first half of the book covers some fundamental modeling and simulation techniques ranging from ab-inito methods to the continuum scale. Included in this set of methods are several different concurrent multiscale methods for bridging time and length scales applicable to mechanics at the nanoscale regime. The second half of the book presents a range of case studies from a varied selection of research groups focusing either on a the application of multiscale modeling to a specific nanomaterial, or novel analysis techniques aimed at exploring nanomechanics. Readers are also directed to helpful sites and other resources throughout the book where the simulation codes and methodologies discussed herein can be accessed. Emphasis on the practicality of the detailed techniques is especially felt in the latter half of the book, which is dedicated to specific examples to study nanomechanics and multiscale materials behavior. An instructive avenue for learning how to effectively apply these simulation tools to solve nanomechanics problems is to study previous endeavors. Therefore, each chapter is written by a unique team of experts who have used multiscale materials modeling to solve a practical nanomechanics problem. These chapters provide an extensive picture of the multiscale materials landscape from problem statement through the final results and outlook, providing readers with a roadmap for incorporating these techniques into their own research.