An Introduction to Infinite Dimensional Dynamical Systems - Geometric Theory
Title | An Introduction to Infinite Dimensional Dynamical Systems - Geometric Theory PDF eBook |
Author | J.K. Hale |
Publisher | Springer Science & Business Media |
Pages | 203 |
Release | 2013-04-17 |
Genre | Mathematics |
ISBN | 1475744935 |
Including: An Introduction to the Homotopy Theory in Noncompact Spaces
An Introduction to Infinite Dimensional Dynamical Systems--geometric Theory
Title | An Introduction to Infinite Dimensional Dynamical Systems--geometric Theory PDF eBook |
Author | Jack K. Hale |
Publisher | Springer Science & Business Media |
Pages | 195 |
Release | 1984 |
Genre | Mathematics |
ISBN | 9780387909318 |
Dynamics in Infinite Dimensions
Title | Dynamics in Infinite Dimensions PDF eBook |
Author | Jack K. Hale |
Publisher | Springer Science & Business Media |
Pages | 287 |
Release | 2002-07-12 |
Genre | Mathematics |
ISBN | 0387954635 |
State-of-the-art in qualitative theory of functional differential equations; Most of the new material has never appeared in book form and some not even in papers; Second edition updated with new topics and results; Methods discussed will apply to other equations and applications
Infinite-Dimensional Dynamical Systems
Title | Infinite-Dimensional Dynamical Systems PDF eBook |
Author | James C. Robinson |
Publisher | Cambridge University Press |
Pages | 488 |
Release | 2001-04-23 |
Genre | Mathematics |
ISBN | 9780521632041 |
This book treats the theory of global attractors, a recent development in the theory of partial differential equations, in a way that also includes much of the traditional elements of the subject. As such it gives a quick but directed introduction to some fundamental concepts, and by the end proceeds to current research problems. Since the subject is relatively new, this is the first book to attempt to treat these various topics in a unified and didactic way. It is intended to be suitable for first year graduate students.
Infinite-Dimensional Dynamical Systems in Mechanics and Physics
Title | Infinite-Dimensional Dynamical Systems in Mechanics and Physics PDF eBook |
Author | Roger Temam |
Publisher | Springer Science & Business Media |
Pages | 670 |
Release | 2013-12-11 |
Genre | Mathematics |
ISBN | 1461206456 |
In this book the author presents the dynamical systems in infinite dimension, especially those generated by dissipative partial differential equations. This book attempts a systematic study of infinite dimensional dynamical systems generated by dissipative evolution partial differential equations arising in mechanics and physics and in other areas of sciences and technology. This second edition has been updated and extended.
From Finite to Infinite Dimensional Dynamical Systems
Title | From Finite to Infinite Dimensional Dynamical Systems PDF eBook |
Author | James Robinson |
Publisher | Springer Science & Business Media |
Pages | 236 |
Release | 2001-05-31 |
Genre | Mathematics |
ISBN | 9780792369769 |
Proceedings of the NATO Advanced Study Institute, Cambridge, UK, 21 August-1 September 1995
Geometrical Theory of Dynamical Systems and Fluid Flows (revised Edition)
Title | Geometrical Theory of Dynamical Systems and Fluid Flows (revised Edition) PDF eBook |
Author | |
Publisher | World Scientific |
Pages | 444 |
Release | 2009 |
Genre | Fluid dynamics |
ISBN | 9814282251 |
"This is an introductory textbook on the geometrical theory of dynamical systems, fluid flows and certain integrable systems. The topics are interdisciplinary and extend from mathematics, mechanics and physics to mechanical engineering, and the approach is very fundamental. The main theme of this book is a unified formulation to understand dynamical evolutions of physical systems within mathematical ideas of Riemannian geometry and Lie groups by using well-known examples. Underlying mathematical concepts include transformation invariance, covariant derivative, geodesic equation and curvature tensors on the basis of differential geometry, theory of Lie groups and integrability. These mathematical theories are applied to physical systems such as free rotation of a top, surface wave of shallow water, action principle in mechanics, diffeomorphic flow of fluids, vortex motions and some integrable systems. In the latest edition, a new formulation of fluid flows is also presented in a unified fashion on the basis of the gauge principle of theoretical physics and principle of least action along with new type of Lagrangians. A great deal of effort has been directed toward making the description elementary, clear and concise, to provide beginners easy access to the topics."-