Differentiable Dynamical Systems
Title | Differentiable Dynamical Systems PDF eBook |
Author | Lan Wen |
Publisher | American Mathematical Soc. |
Pages | 207 |
Release | 2016-07-20 |
Genre | Mathematics |
ISBN | 1470427990 |
This is a graduate text in differentiable dynamical systems. It focuses on structural stability and hyperbolicity, a topic that is central to the field. Starting with the basic concepts of dynamical systems, analyzing the historic systems of the Smale horseshoe, Anosov toral automorphisms, and the solenoid attractor, the book develops the hyperbolic theory first for hyperbolic fixed points and then for general hyperbolic sets. The problems of stable manifolds, structural stability, and shadowing property are investigated, which lead to a highlight of the book, the Ω-stability theorem of Smale. While the content is rather standard, a key objective of the book is to present a thorough treatment for some tough material that has remained an obstacle to teaching and learning the subject matter. The treatment is straightforward and hence could be particularly suitable for self-study. Selected solutions are available electronically for instructors only. Please send email to [email protected] for more information.
Normally Hyperbolic Invariant Manifolds in Dynamical Systems
Title | Normally Hyperbolic Invariant Manifolds in Dynamical Systems PDF eBook |
Author | Stephen Wiggins |
Publisher | Springer Science & Business Media |
Pages | 198 |
Release | 2013-11-22 |
Genre | Mathematics |
ISBN | 1461243122 |
In the past ten years, there has been much progress in understanding the global dynamics of systems with several degrees-of-freedom. An important tool in these studies has been the theory of normally hyperbolic invariant manifolds and foliations of normally hyperbolic invariant manifolds. In recent years these techniques have been used for the development of global perturbation methods, the study of resonance phenomena in coupled oscillators, geometric singular perturbation theory, and the study of bursting phenomena in biological oscillators. "Invariant manifold theorems" have become standard tools for applied mathematicians, physicists, engineers, and virtually anyone working on nonlinear problems from a geometric viewpoint. In this book, the author gives a self-contained development of these ideas as well as proofs of the main theorems along the lines of the seminal works of Fenichel. In general, the Fenichel theory is very valuable for many applications, but it is not easy for people to get into from existing literature. This book provides an excellent avenue to that. Wiggins also describes a variety of settings where these techniques can be used in applications.
Introduction to Dynamical Systems
Title | Introduction to Dynamical Systems PDF eBook |
Author | Michael Brin |
Publisher | Cambridge University Press |
Pages | 0 |
Release | 2015-11-05 |
Genre | Mathematics |
ISBN | 9781107538948 |
This book provides a broad introduction to the subject of dynamical systems, suitable for a one or two-semester graduate course. In the first chapter, the authors introduce over a dozen examples, and then use these examples throughout the book to motivate and clarify the development of the theory. Topics include topological dynamics, symbolic dynamics, ergodic theory, hyperbolic dynamics, one-dimensional dynamics, complex dynamics, and measure-theoretic entropy. The authors top off the presentation with some beautiful and remarkable applications of dynamical systems to areas such as number theory, data storage, and internet search engines.
Introduction to the Modern Theory of Dynamical Systems
Title | Introduction to the Modern Theory of Dynamical Systems PDF eBook |
Author | Anatole Katok |
Publisher | Cambridge University Press |
Pages | 828 |
Release | 1995 |
Genre | Mathematics |
ISBN | 9780521575577 |
This book provided the first self-contained comprehensive exposition of the theory of dynamical systems as a core mathematical discipline closely intertwined with most of the main areas of mathematics. The authors introduce and rigorously develop the theory while providing researchers interested in applications with fundamental tools and paradigms. The book begins with a discussion of several elementary but fundamental examples. These are used to formulate a program for the general study of asymptotic properties and to introduce the principal theoretical concepts and methods. The main theme of the second part of the book is the interplay between local analysis near individual orbits and the global complexity of the orbit structure. The third and fourth parts develop the theories of low-dimensional dynamical systems and hyperbolic dynamical systems in depth. Over 400 systematic exercises are included in the text. The book is aimed at students and researchers in mathematics at all levels from advanced undergraduate up.
Dynamical Systems
Title | Dynamical Systems PDF eBook |
Author | Luis Barreira |
Publisher | Springer Science & Business Media |
Pages | 214 |
Release | 2012-12-02 |
Genre | Mathematics |
ISBN | 1447148355 |
The theory of dynamical systems is a broad and active research subject with connections to most parts of mathematics. Dynamical Systems: An Introduction undertakes the difficult task to provide a self-contained and compact introduction. Topics covered include topological, low-dimensional, hyperbolic and symbolic dynamics, as well as a brief introduction to ergodic theory. In particular, the authors consider topological recurrence, topological entropy, homeomorphisms and diffeomorphisms of the circle, Sharkovski's ordering, the Poincaré-Bendixson theory, and the construction of stable manifolds, as well as an introduction to geodesic flows and the study of hyperbolicity (the latter is often absent in a first introduction). Moreover, the authors introduce the basics of symbolic dynamics, the construction of symbolic codings, invariant measures, Poincaré's recurrence theorem and Birkhoff's ergodic theorem. The exposition is mathematically rigorous, concise and direct: all statements (except for some results from other areas) are proven. At the same time, the text illustrates the theory with many examples and 140 exercises of variable levels of difficulty. The only prerequisites are a background in linear algebra, analysis and elementary topology. This is a textbook primarily designed for a one-semester or two-semesters course at the advanced undergraduate or beginning graduate levels. It can also be used for self-study and as a starting point for more advanced topics.
Nonuniformly Hyperbolic Attractors
Title | Nonuniformly Hyperbolic Attractors PDF eBook |
Author | José F. Alves |
Publisher | Springer Nature |
Pages | 259 |
Release | 2020-12-19 |
Genre | Mathematics |
ISBN | 3030628140 |
This monograph offers a coherent, self-contained account of the theory of Sinai–Ruelle–Bowen measures and decay of correlations for nonuniformly hyperbolic dynamical systems. A central topic in the statistical theory of dynamical systems, the book in particular provides a detailed exposition of the theory developed by L.-S. Young for systems admitting induced maps with certain analytic and geometric properties. After a brief introduction and preliminary results, Chapters 3, 4, 6 and 7 provide essentially the same pattern of results in increasingly interesting and complicated settings. Each chapter builds on the previous one, apart from Chapter 5 which presents a general abstract framework to bridge the more classical expanding and hyperbolic systems explored in Chapters 3 and 4 with the nonuniformly expanding and partially hyperbolic systems described in Chapters 6 and 7. Throughout the book, the theory is illustrated with applications. A clear and detailed account of topics of current research interest, this monograph will be of interest to researchers in dynamical systems and ergodic theory. In particular, beginning researchers and graduate students will appreciate the accessible, self-contained presentation.
An Introduction To Chaotic Dynamical Systems
Title | An Introduction To Chaotic Dynamical Systems PDF eBook |
Author | Robert Devaney |
Publisher | CRC Press |
Pages | 280 |
Release | 2018-03-09 |
Genre | Mathematics |
ISBN | 0429981937 |
The study of nonlinear dynamical systems has exploded in the past 25 years, and Robert L. Devaney has made these advanced research developments accessible to undergraduate and graduate mathematics students as well as researchers in other disciplines with the introduction of this widely praised book. In this second edition of his best-selling text, Devaney includes new material on the orbit diagram fro maps of the interval and the Mandelbrot set, as well as striking color photos illustrating both Julia and Mandelbrot sets. This book assumes no prior acquaintance with advanced mathematical topics such as measure theory, topology, and differential geometry. Assuming only a knowledge of calculus, Devaney introduces many of the basic concepts of modern dynamical systems theory and leads the reader to the point of current research in several areas.