An Introduction to Conditional Random Fields
Title | An Introduction to Conditional Random Fields PDF eBook |
Author | Charles Sutton |
Publisher | Now Pub |
Pages | 120 |
Release | 2012 |
Genre | Computers |
ISBN | 9781601985729 |
An Introduction to Conditional Random Fields provides a comprehensive tutorial aimed at application-oriented practitioners seeking to apply CRFs. The monograph does not assume previous knowledge of graphical modeling, and so is intended to be useful to practitioners in a wide variety of fields.
Gaussian Markov Random Fields
Title | Gaussian Markov Random Fields PDF eBook |
Author | Havard Rue |
Publisher | CRC Press |
Pages | 280 |
Release | 2005-02-18 |
Genre | Mathematics |
ISBN | 0203492021 |
Gaussian Markov Random Field (GMRF) models are most widely used in spatial statistics - a very active area of research in which few up-to-date reference works are available. This is the first book on the subject that provides a unified framework of GMRFs with particular emphasis on the computational aspects. This book includes extensive case-studie
Hidden Conditional Random Fields for Speech Recognition
Title | Hidden Conditional Random Fields for Speech Recognition PDF eBook |
Author | Yun-Hsuan Sung |
Publisher | Stanford University |
Pages | 161 |
Release | 2010 |
Genre | |
ISBN |
This thesis investigates using a new graphical model, hidden conditional random fields (HCRFs), for speech recognition. Conditional random fields (CRFs) are discriminative sequence models that have been successfully applied to several tasks in text processing, such as named entity recognition. Recently, there has been increasing interest in applying CRFs to speech recognition due to the similarity between speech and text processing. HCRFs are CRFs augmented with hidden variables that are capable of representing the dynamic changes and variations in speech signals. HCRFs also have the ability to incorporate correlated features from both speech signals and text without making strong independence assumptions among them. This thesis presents my current research on applying HCRFs to speech recognition and HCRFs' potential to replace the current hidden Markov model (HMM) for acoustic modeling. Experimental results of phone classification, phone recognition, and speaker adaptation are presented and discussed. Our monophone HCRFs outperform both maximum mutual information estimation (MMIE) and minimum phone error (MPE) trained HMMs and achieve the-start-of-the-art performance in TIMIT phone classification and recognition tasks. We also show how to jointly train acoustic models and language models in HCRFs, which shows improvement in the results. Maximum a posterior (MAP) and maximum conditional likelihood linear regression (MCLLR) successfully adapt speaker-independent models to speaker-dependent models with a small amount of adaptation data for HCRF speaker adaptation. Finally, we explore adding gender and dialect features for phone recognition, and experimental results are presented.
Markov Random Field Modeling in Image Analysis
Title | Markov Random Field Modeling in Image Analysis PDF eBook |
Author | Stan Z. Li |
Publisher | Springer Science & Business Media |
Pages | 372 |
Release | 2009-04-03 |
Genre | Computers |
ISBN | 1848002793 |
Markov random field (MRF) theory provides a basis for modeling contextual constraints in visual processing and interpretation. It enables us to develop optimal vision algorithms systematically when used with optimization principles. This book presents a comprehensive study on the use of MRFs for solving computer vision problems. Various vision models are presented in a unified framework, including image restoration and reconstruction, edge and region segmentation, texture, stereo and motion, object matching and recognition, and pose estimation. This third edition includes the most recent advances and has new and expanded sections on topics such as: Bayesian Network; Discriminative Random Fields; Strong Random Fields; Spatial-Temporal Models; Learning MRF for Classification. This book is an excellent reference for researchers working in computer vision, image processing, statistical pattern recognition and applications of MRFs. It is also suitable as a text for advanced courses in these areas.
Advances in Information and Communication
Title | Advances in Information and Communication PDF eBook |
Author | Kohei Arai |
Publisher | Springer Nature |
Pages | 943 |
Release | 2020-02-13 |
Genre | Technology & Engineering |
ISBN | 3030394425 |
This book presents high-quality research on the concepts and developments in the field of information and communication technologies, and their applications. It features 134 rigorously selected papers (including 10 poster papers) from the Future of Information and Communication Conference 2020 (FICC 2020), held in San Francisco, USA, from March 5 to 6, 2020, addressing state-of-the-art intelligent methods and techniques for solving real-world problems along with a vision of future research. Discussing various aspects of communication, data science, ambient intelligence, networking, computing, security and Internet of Things, the book offers researchers, scientists, industrial engineers and students valuable insights into the current research and next generation information science and communication technologies.
Markov Random Fields and Their Applications
Title | Markov Random Fields and Their Applications PDF eBook |
Author | Ross Kindermann |
Publisher | |
Pages | 160 |
Release | 1980 |
Genre | Mathematics |
ISBN |
The study of Markov random fields has brought exciting new problems to probability theory which are being developed in parallel with basic investigation in other disciplines, most notably physics. The mathematical and physical literature is often quite technical. This book aims at a more gentle introduction to these new areas of research.
Machine Learning
Title | Machine Learning PDF eBook |
Author | Kevin P. Murphy |
Publisher | MIT Press |
Pages | 1102 |
Release | 2012-08-24 |
Genre | Computers |
ISBN | 0262018020 |
A comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach. Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach. The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package—PMTK (probabilistic modeling toolkit)—that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.